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Normalized water-leaving radiance at 443 nm from several overpasses of the ESA’s Sentinal3-OLCI sensor, covering Australia’s surrounding seas 
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Preamble 

 
 

The long-term vision that has underlain the proposal to IMOS for the “Radiometry Task Team” (RTT), 
whose work is summarised in this report, is as follows. 

We think that the Australian research community involved into ocean colour and bio-optics science has 
the potential to become a major player in the Southern hemisphere in the coming years. We want to play this 
role by providing crucial validation data to the upcoming global satellite missions (Sentinels in particular), by 
delivering satellite products tailored to the needs of Australian researchers, institutions and users, and by 
improving practices and knowledge of our community in the domain of fieldwork in optics.   

The Australian Government has now an agreement with the European Commission (EC), signed by 
Geosciences Australia (GA) on hosting the collaborative Ground Segment for the Sentinel system. This 
agreement was, amongst other reasons, reached on the understanding that Australia would deliver world-class 
calibration –validation data back to the EC, the European Space Agency (ESA) and the European Organisation 
for the Exploitation of Meteorological Satellites (EUMETSAT). 

This will be feasible by building on the investments of the past 10 years, by taking advantage of the next 
slice of NCRIS funding to leverage co-contributions, and also by reorganizing significantly our assets and 
activities. International engagement will also be key to success here, for instance through the validation teams 
of global mission, the IOCCG, the building of international research proposals. 

 
We hope that the present report shows how the RTT has achieved a first step in that direction and, above 

all, has allowed a community plan to be put together for the coming years.   
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1 Background 
Given Australia’s vast ocean territory, satellite measurements form an important means by which to 

establish baselines and assess spatial and temporal patterns of change in coastal and offshore ecosystems. The 
technique considered here is ocean colour radiometry (OCR; Acronyms in section 0), provided now for about 
20 years by dedicated OCR satellite missions, from NASA and ESA in particular. 

These OCR missions have the capacity to deliver publicly available data at spatial resolution from 250m to 
1km on daily time-steps, and have been used to describe large to meso-scale patterns in ocean properties for 
the last several decades. A recent example relevant to the Australia Integrated Marine Observing System 
(IMOS) is the analysis of the spatial and temporal variability of the Leeuwin Current from MODIS 
observations (Huang and Feng, 2015). IMOS currently serves such products to the Australian research 
community, with an emphasis on tailored continental-scale products, which are not necessarily available from 
the space agencies owning the satellite missions. A phytoplankton chlorophyll product adapted to the 
southern ocean is for instance proposed by the IMOS Satellite Remote Sensing Facility (SRS), following the 
work by Johnson et al. (2013). The Marine Water Quality Dashboard 
(http://www.bom.gov.au/marinewaterquality/) operated by the Australian Bureau of Meteorology (BoM) for 
the Great Barrier Reef (GBR) is an example of an operational system that relies on OCR. 

Algorithms used to derive ocean properties from remote sensing reflectance have largely been developed 
using in situ data collected in locations distant from Australia (large northern hemisphere bias). Validation of 
some satellite products for regional application has already demonstrated that global algorithms are not 
sufficient to accurately describe some local ocean properties – e.g. in east Australian coastal waters, satellites 
generally over-estimate Chl-a, due to confusion with coloured dissolved organic matter (CDOM) and the 
organic component of non-algal particles (NAP) (Qin et al., 2007; Everett and Doblin 2015). Moreover, in 
Australian turbid tropical waters with very high NAP concentrations, discriminating Chl-a requires a highly 
accurate radiometric signal (Qin et al., 2007; Brando et al., 2012). In Tasmanian waters with very high 
CDOM, discriminating Chl-a from CDOM also requires highly accurate radiometry and suitable inversion 
algorithms (Schroeder et al., 2008). Given the key role played by the Southern Ocean in climate, and the 
known shortcomings of existing OCR algorithms in that domain (e.g., Johnson et al., 2013), improved bio-
optical modelling, driven by in situ observations of Apparent Optical Properties (AOPs), will be critical to 
maximising the value of satellite observations. 

Biogeochemical (BGC) modelling is one important use of IMOS data, in particular via the Blue Water & 
Climate node activities (http://imos.org.au/nodes/bluewaterclimate/) (Steven et al., 2014). An important 
avenue of research in the BGC modelling community has focused on improving the modelling of the 
underwater light field (Baird et al., 2014). Indeed, doing a better job of propagating solar energy in the water 
column has two main impacts. On the one hand, a more realistic heat deposition as a function of depth in the 
water column leads to a better modelling of the mixed-layer dynamics. On the other hand, a better calculation 
of the amount and spectral composition of irradiance at various depths provides more accurate photon counts 
for photosynthesis quantification. Techniques exist now to accurately model underwater light propagation in 
a way that is not particularly demanding in terms of computational time (Mobley et al., 2015). The parameters 
that drive light propagation and use in the water column are absorption and scattering. As such, the IMOS 
bio-optical data set is critically important for BGC modelling of Australian waters. 

To address these needs, researchers are using alternative approaches that involve measuring the inherent 
and apparent optical properties (IOPs and AOPs) of the upper ocean, alongside ocean biogeochemical 
properties, to develop regionally specific satellite algorithms (Blondeau-Patissier et al., 2009, Schroeder et al., 
2012). As a complement to satellite observations, submersible optical sensors that measure Chl-a and CDOM 
fluorescence, optical backscatter and radiometry at depth are being deployed on ocean observing platforms 
worldwide to estimate the concentration and productivity of subsurface phytoplankton. Yet despite our 
increased vertical view of the ocean, there are still substantial challenges in using optical properties to 
estimate primary productivity (PP) and other biogeochemical properties in coastal water.  

2 Rationale 
In the coming 5 years, the IMOS remote sensing facility will progressively incorporate data from the 

VIIRS (NOAA), and is proposing to deliver data from the Copernicus Sentinel missions (ESA), in order to 
serve the Australian community with data for the long term. This diversification is essential as MODIS, on 
which we have relied since 2002 (and solely since 2010) is already operating long past its planned mission 
lifetime, with sensor degradation indicating that it is very close to the end of its operational life. Future NASA 
satellite missions are in planning but will focus on novel, experimental Earth observing concepts rather than 

http://imos.org.au/nodes/bluewaterclimate/
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maintaining current ocean colour observing capabilities; thus it is necessary for operational ocean colour 
products from other agencies to be made accessible by the ocean colour community. In this process of 
adaptation, the IMOS bio-optics community must evaluate whether the data they generate for 
calibration/validation operations (hereafter “cal/val”) of ocean colour sensors are relevant.  

Many remote sensing algorithms are presented as being global, yet are only validated locally, usually in 
northern hemisphere locations centred on US and European research institutes. Thus, local validation of 
algorithms used in Australian waters is critical for ensuring their suitability locally. It is essential when 
comparing global or regional algorithms that the underpinning radiometric satellite derived datasets are of 
the highest ascertainable quality so that in algorithm comparisons it is only the algorithm that has effect on 
the outcomes and not radiometric differences in the measurements used for validation. These same radiometric 
and in situ biogeochemical data can also be used in developing new locally applicable algorithms, which in 
turn require appropriate cal/val data. 

Critical to improving the accuracy and application of satellite derived products is the calibration of the 
satellite radiometry signal using in-water and above water radiometry to correct for satellite sensor drift, 
atmospheric aerosols and satellite geometries; and to better connect water leaving radiance to the unique 
optical and biogeochemical properties of Australian waters. 

Measurements of the required radiometric quantities, from which AOPs are derived, are performed by 
IMOS from a variety of platforms (ships and fixed stations) and using different instruments (essentially the 
DALECs on the AIMS vessel, Solander, and the SeaPrism at the Lucinda Jetty Coastal Observatory, LJCO). 
Ensuring consistency of these different measurements is essential, but a systematic comparison has not been 
undertaken. Normalizing protocols helps also in sharing data by improving consistency among measurements 
and therefore the confidence that we put in the derived data.  

The IMOS “Radiometry Task Team” (RTT) was proposed in 2016 to address these issues. 

3 Objectives 
The objective of the task team was to perform activities that can ultimately improve usability (and re-

usability) of IMOS radiometric data sets for research purposes as well as for validation of satellite ocean colour 
products. Improving usability essentially means improving the quality of the data sets, and improving re-
usability means that data collection and processing protocols, as well as uncertainties, are well described. For 
example, the various instruments used to collect IMOS ocean radiometry are ostensibly measuring the same 
parameters, but each produces data that are specific to that instrument and processing methodology. For 
instance, the DALEC radiometer is a 3-sensor hyperspectral instrument used from ships, and the LJCO 
collects radiometric data from other types of radiometers on a fixed platform, such as the multiband SeaPrism 
instrument. Furthermore, there are at least two other types of radiometers used in the wider Australian bio-
optical community, thus, in the absence of any inter-comparison there is no way to evaluate whether these 
data sets are mutually consistent.  

Appendix 1 provides a list of factors possibly impacting the accuracy of the radiometry products and the 
quantities derived from them, such as the remote sensing reflectance. A number of these factors were 
addressed in the work reported here. 

These activities are upstream of any research endeavour that is based on using field radiometry or satellite 
observations.  

A further objective was to develop a plan for the evolution of radiometry measurements in IMOS for the 
next decade as there are imminent developments in further sophistication of optical instrumentation that 
Australia will need to adopt.  

These objectives were addressed through the following actions: 
1.  Evaluate the degree of consistency among existing field-platform and sea-going radiometers used in the 
IMOS and the wider Australian bio-optical community, through dedicated laboratory and field experiments. 
2.  If needed, propose actions to improve consistency among these instruments and the way they are deployed 
(protocols) and the way data are processed. 
3.  Develop a plan for the evolution of IMOS radiometry measurements for the next decade. 

4 Overall schedule of the activity, communications, use of funds 

4.1 Schedule 
The overall schedule of the activity is presented in Table 1.  
 

 2016 2017 



 Radiometry Task Team, final report, 30th June 2017 
 
 

3 

 July Aug Sep Oct Nov Dec Jan Feb Mar Apr May June 
Laboratory characterizations and calibrations 
Lab work             
Data processing             
Report writing             

Field inter-comparison at LJCO 
Field work             
Data processing             
Report writing             

Project meetings, presentation, and final reporting 
Project meetings     * *  *  *    *   * 
Talks & Posters        ***   * *1 
Web stories         * *    
Final report             

 
Table 1: overall schedule of the activities performed by the IMOS “Radiometry Task Team” 
 
The work undertaken comprised: 

- Laboratory calibration and characterisation of field-platform and sea-going radiometers used by the 
Australian community 

- Deployment of these radiometers in a field inter-comparison exercise at the Lucinda Jetty Coastal 
Observatory (LJCO) 

- Processing and interpreting data from these two activities, and discussions about what we learnt and 
how we move forward. 

 
The main findings are summarised in section 5, and the associated recommendations and future possible 
developments are discussed in section 6. Then section 7 is a summary of recommendations. 
 
The meetings listed in Table 1 were: 
 

- Numerous discussions during the LJCO experiment (7th – 11th November 2016) 
- A WebEx discussion on 1st December 2016 
- A Teleconference on 3rd February 2017 
- A face-to-face meeting at the UWA IOMRC, the morning before the IMOS Annual planning meeting 

(14th February 2017) 
- Two WebEx discussions on the 8th and 28th June 2017 (final report preparation). 
 
Otherwise, the project has been managed through frequent email communication. 

4.2 Communications 
The work of the IMOS RTT has been presented at several occasions during the course of the work, in 

particular by taking advantage of already-planned participation of members of the RTT to international 
meetings.   

4.2.1 Annual IOCCG committee meeting, Perth, February 2017 
The RTT activities were included in the overview talk that Nick Hardman-Mountford delivered at the 22nd 

annual IOCCG committee meeting in Perth: 
 
Hardman-Mountford, N. Australian ocean colour activities. 22nd annual IOCCG committee meeting, Perth, 7-

9 February 2017. 

4.2.2 IMOS annual planning meeting, Perth, February 2017 
A status report of the activity was presented at the annual IMOS planning meeting, as part of the project 

deliverables (talk): 

                                                        
1 AMSA conference, Darwin, actually in July 2017 (3rd to 6th)  
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Antoine D., T. Schroeder, E. Botha, N. Cherukuru, A. Dekker, M. Doblin, P. Fearns, N. Hardman-Mountford, 

R. Johnson, E. King, W. Klonowski, J. Lovell, T. Malthus, C. Robinson, M. Slivkoff, P. Thompson, P. Van 
Ruth, Update on the Australian Integrated Marine Observing System (IMOS) radiometry task team. 
Australia Integrated Marine Observing System (IMOS) Annual Planning Meeting, 14-16 February 2017, 
Perth. 

4.2.3 “FRM4SOC” workshop, ESA-ESRIN, Frascati, Italy, February 2017 
The activity was presented (talk) at the occasion of a workshop organised by ESA, as an opportunity to 

further establish the connection between the OCR Australian community and the international community 
working on similar subjects: 
 
Antoine D., T. Schroeder, E. Botha, N. Cherukuru, A. Dekker, M. Doblin, P. Fearns, N. Hardman-Mountford, 

R. Johnson, E. King, W. Klonowski, J. Lovell, T. Malthus, C. Robinson, M. Slivkoff, P. Thompson, P. Van 
Ruth, The Australian Integrated Marine Observing System (IMOS) radiometry task team: a community 
effort towards improved field ocean colour measurements. ESA workshop on options for future European 
satellite OCR vicarious adjustment infrastructure for the Sentinel-3 OLCI and Sentinel-2 MSI series, 21 – 
23 Feb. 2017 ESA/ESRIN, Frascati, Italy. 

4.2.4 Sentinel 3 validation team, ESA-ESRIN, Italy, February 2017 
The activity was presented by T. Schroeder (talk) at the occasion of a meeting of the ESA Sentinel-3 

Validation Team: 
 

Schroeder T., Evaluation of Sentinel-3 OLCI Level 2 products in Australian waters, Sentinel-3 Validation 
Team Meeting, 15-17 February 2017, ESA ESRIN, Frascati, Italy 

4.2.5 IOCS meeting, Lisbon, Portugal, May 2017 
The participation of D. Antoine to the 2017 IOCS meeting was another opportunity to present our 

activities to a larger international community (Poster): 
 
Antoine D., T. Schroeder, E. Botha, N. Cherukuru, A. Dekker, M. Doblin, P. Fearns, N. Hardman-Mountford, 

R. Johnson, E. King, W. Klonowski, J. Lovell, T. Malthus, C. Robinson, M. Slivkoff, P. Thompson, P. Van 
Ruth, The Australian Integrated Marine Observing System (IMOS) radiometry task team: a community 
effort towards improved field ocean colour measurements. International Ocean Colour Science Meeting 
2017, Lisbon, Portugal, 15-18 May 2017. 

4.2.6 AMSA conference, Darwin, Australia, July 2017 
The RTT activity will also be presented at the 2017 AMSA conference in Darwin (“PEP talk”), as part of 

the project deliverables: 
 
Antoine D., T. Schroeder, E. Botha, N. Cherukuru, A. Dekker, M. Doblin, P. Fearns, N. Hardman-Mountford, 

R. Johnson, E. King, W. Klonowski, J. Lovell, T. Malthus, C. Robinson, M. Slivkoff, P. Thompson, P. Van 
Ruth, The Australian Integrated Marine Observing System (IMOS) radiometry task team: a community 
effort towards improved field ocean colour measurements. Australian Marine Sciences Association annual 
conference, 3-6July 2017, Darwin.  

4.2.7 Marine Matters, IMOS bulletin 
An article was published in the IMOS bulletin “Marine matters”: 

 
Slivkoff, M., D. Antoine, and the RTT team, “IMOS Task Team goes troppo to solve radiometry challenges”, 

Marine Matters, issue 27, June 2017. 

4.2.8 Web stories 
Web stories have been also posted on: 

http://imos.org.au/newsitem.html?&no_cache=1&tx_ttnews%5Btt_news%5D=616&cHash=dacfec2c1e35f42
2b86a9c13fb7d678c  
and 
https://frm4soc.org/index.php/the-australian-integrated-marine-observing-systems-radiometry-task-team/  

4.3 Use of funds 
The funding for the activity of the IMOS RTT was of $100,420. It was used as follows: 

http://imos.org.au/newsitem.html?&no_cache=1&tx_ttnews%5Btt_news%5D=616&cHash=dacfec2c1e35f422b86a9c13fb7d678c
http://imos.org.au/newsitem.html?&no_cache=1&tx_ttnews%5Btt_news%5D=616&cHash=dacfec2c1e35f422b86a9c13fb7d678c
https://frm4soc.org/index.php/the-australian-integrated-marine-observing-systems-radiometry-task-team/
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x $25,920 to support CSIRO staff 
x $15,000 to the laboratory experiment (work by Insitu Marine Optics) 
x $50,000 to salary support for Matt Slivkoff at Curtin University (0.38 FTE) 
x $9,500 to travel support to the experiment at LJCO and associated consumables 

 
Other cash and in-kind contributions were: 
x Curtin : salary + on-costs for D. Antoine, 0.1FTE for one year: $24,390  
x CSIRO : Salaries $17,200 co-investment with additional in-kind from IMOS Ocean Colour    
x UTS : $5,700; $1,175 cash, remainder in-kind 
x BoM : Salary + on-costs for R. Johnson, ended up being review of documents only: ~$300  
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5 Main findings from the laboratory and field experiments 
The aims of the laboratory experiment were: 

- To consistently calibrate all radiometers to be subsequently used in the field for this experiment, so that 
differences due to inconsistent calibrations do not confuse the comparison of results  
- To perform characterisation experiments in order to better understand how these instruments respond to 
environmental conditions and to various levels of radiance or irradiance 
- To provide some training to non-specialist members of the RTT about the radiometric calibration 
process to build national capacity 

The aims of the field experiments at LJCO were: 
- To bring together the community for an inter-comparison of radiometry measurements at a well-
characterized site, i.e., the Lucinda Jetty Coastal Observatory (LJCO) 
- Use that opportunity to further build capacity by training the community in best practice for deployment 
of, and data processing from, radiometers. 

 
The detailed reports of these two activities are provided as appendices 2 and 3 of this final summary report, 

while we provide a summary of the main findings and observations in the subsequent sections. 

5.1 About our community 
It was definitely of significant benefit to bring together the Australian research community working on 

OCR-related topics in order to start building capability (see list of participants to the lab and field experiments 
in Appendix 4). As reminded in the introduction, field radiometry is definitely a difficult endeavour. This 
community spans physicists, mathematicians, biologists, ecosystem scientists, involved in, e.g., algorithm 
development, instrument development, remote sensing (RS) applications, modelling, but all with a common 
need to understand the potential and limitations of RS and marine optics. 

Only two groups have significant expertise on those topics, namely the Curtin RSSRG and the CSIRO 
O&A group in Brisbane and Canberra. Other research groups (e.g., UTS, SARDI) use (or plan to use) sea-
going radiometers, yet they do not necessarily have the focus on calibration and characterization of these 
types of instruments, although they do acknowledge such activities are important to collect accurate data. 

Alignment of field practice, together with common language for calibration and metadata, are critical 
community characteristics that facilitate re-use of bio-optical radiometric measurements.  This in turn enables 
the assembly of larger merged national data sets that can support a larger downstream research community. 

The RTT work was also an opportunity to appreciate that the Australian “bio-optical” community is not 
that large, so that collaborative actions could be rather easily developed. 

5.2 About instrument characterisation and calibration 
- The Australian OCR community use a range of field instruments that have differing characteristics, although 
most of them rely on the same basic sensor technology, i.e., Zeiss spectrometers. The way the instruments are 
designed, deployed, and the way the data are processed to generate the quantities of interest is where the 
differences come from.  
- Temperature effects on instruments (spectrometers delivering hyperspectral measurements) must be 
characterised in the laboratory and taken into account when processing data collected in the field, especially 
when the temperature at which the instruments operate is significantly warmer or cooler than the typical 
room temperature during laboratory calibrations. Sensors can deviate by as much as 0.56%/°C, (wavelength 
dependent) so temperature can easily introduce greater than 5% errors in radiometric measurements for the 
typical temperature differences encountered between initial factory calibrations and above water deployment 
temperatures.  Some sensors, such as the TriOS RAMSES do not record internal temperature, so the accuracy 
of these instruments is limited in these types of applications unless a warmer calibration is applied. For 
sensors that do record internal temperature, post-processing schemes can be applied to improve accuracy 
throughout the temperature ranges encountered during deployment. 
- The behaviour of instruments with respect to changing integration time at a given level of radiation or 
varying radiation levels for a given integration time should be fully characterised in order to define the 
“comfort zone” of instruments, i.e., the domain where they linearly respond to radiation levels and, possibly, to 
introduce non-linearity corrections if the instruments are to be operated in their non-linear domain. 
 - Non-IMOS instruments did not behave significantly differently from IMOS instruments (after all these 
instruments went through a unified calibration at IMO). See Figures 17 to 28 in the annexed report of the 
field experiment at LJCO. 
- The DALEC cosine response could be improved if measurements are to be performed at low sun elevation 
angles. 
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- The RAMSES tested did not have internal temperature sensors, so users cannot apply temperature-specific 
corrections to them (meaning up to 10% uncertainties simply due to the difference between measuring 
temperature and calibration temperature) 
- The HyperOCR spectra frequently have what the manufacturer describes as spectral “glitches”, which need 
to be filtered out during post-processing. This means “raw” data from HyperOCR are actually pre-filtered to 
remove outliers. 
- A pixel shift correction is required to rectify an incorrect wavelength assignment in the IMOS DALEC. 
- Two UTS RAMSES irradiance spectrometers were measuring 20% lower in the blue, compared to the 
factory calibration performed 5 years previously. This demonstrates the need for regular radiometric 
calibration. 
- The wavelength calibration of all 3 Curtin DALEC spectrometers was shown to have drifted in time from 
the original calibration, and this directly impacts on the radiometric calibration. It is recommended that 
wavelength calibration be routinely performed during radiometric calibrations.    
- The irradiance of two different FEL calibration lamps of varying ages and burn times agreed to within 2% of 
each other (compared with a 3rd reference lamp), indicating they are an appropriate calibration reference 
standard.  
- The SeaPRISM calibration was found in excellent agreement with the NASA performed calibration within 
±1% for visible wavelengths and ±1.5% for NIR wavelengths. 

5.3 About field deployment procedures 
- Properly placing instruments so that they are not (or minimally) perturbed by the superstructure hosting 
them is always a challenge, even at a site like the jetty based LJCO which does not suffer from needing to 
operate with a sea-going ship infrastructure. 
- When a reference sensor is used to measure the downward solar irradiance, its location should be selected 
with great care so that shading or reflection from the vessel (more generally the platform) does not 
compromise the measurements. 
- Where possible additional dark count measurements should be taken (by completely covering the sensor 
heads). With spectrometer-based instruments, these measurements are normally not used in the data 
processing because the instruments are equipped with internal shutters that provide the dark current 
measurements. However, the “caps ON” measurements are still useful to monitor instrument behaviour 
specifically at variable temperature conditions.  
- Above-water measurements are the most commonly carried out in the Australian community, whether it is 
from LJCO (the case here) or ship of opportunity or during dedicated research voyages. Albeit simple to put in 
practice, which is likely why they are popular, they actually require great care for the data to be of high 
quality. When carried out from a ship, the ship speed, the ship superstructure shape and colour, the ship 
orientation with respect to the sun, the location of instruments, the recording of wave characteristics, are 
important factors that will eventually define data quality. 

5.4 About data processing methods 
- Radiance sensor fields of view and integration times vary amongst sensors, and the sea-surface is a 
temporally variable target, so direct comparison of radiance coming from the sea (Lsea) from different 
instruments at their native integration settings does not necessarily make sense. In this scenario, processing 
steps are needed to derive the water-leaving radiance (i.e., the total radiance recorded by the instrument 
corrected from the reflection of skylight), and it is only at that step that meaningful comparison can be made. 
- Measurements of the above-water downward irradiance, Es, can be checked against theoretical clear-sky 
computations including an uncertainty budget to provide a reference measurement of irradiance free of 
instrumental errors. These theoretical computations can be performed with high accuracy when combined 
with measurement of actual conditions (wind speed, atmospheric pressure, aerosol optical thickness, and ozone 
vertical column density). 
- Solar zenith angle is a key parameter to be accounted for in data QC, because environmental perturbations 
and uncertainties in a number of processing steps increase as it increases. 
- Sensor internal temperature affects radiometric accuracy, so must be measured during deployment and then 
considered when post-processing any radiometric data. Currently, none of the instrument manufacturer’s 
post-processing software or factory calibrations consider internal temperature. Furthermore, the RAMSES 
spectrometer does not collect internal temperature, making improvements in post-processing RAMSES data 
difficult.  
- Due to the diversity of users, native instrument file formats and resultant workflow (including embedded 
corrections), new manufacturer-emulated calibration files based on the lab characterisation needed to be 
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created in order to utilise native software to apply the new calibration coefficients. This is not ideal but 
unavoidable.  
- Ideally, raw instrument data would be collected and then re-formatted and stored in a standardised human-
readable data format, after which temperature correction, dark offsets and radiometric calibration coefficients 
can be applied. The output of this processing would then also be stored in a standardised human-readable data 
format such as the one used in this project, thereby greatly assisting the comparison and subsequent uptake of 
information. 

5.5 About satellite validation operations 
The international OCR community actually never managed to establish clear requirements for the accuracy 

or uncertainty of marine reflectances in coastal waters. There is a quasi-single requirement for clear, open-
ocean, waters, which is “5% uncertainty in the blue part of the e.m. spectrum for oligotrophic waters“ (Gordon 
and Clark, 1981; Antoine et al., 1999), and is largely based on deriving geophysical products using band ratio 
techniques. It is, therefore, somewhat difficult to claim whether a given measurement site or data set is 
qualified to produce validation data for satellite-derived Rrs in coastal (turbid) waters. Different applications 
using a variety of products and algorithms for their specific objectives might end up with different 
requirements. 

What can be done, however, is to assign an uncertainty estimate to the Rrs values derived from field 
measurements, so that it can be subsequently assessed against requirements, assuming that such requirements 
would be derived at some point. 

Deriving relevant uncertainty budgets for field measurements of radiometric quantity is currently an area 
of international research. To our knowledge, radiometric quantities or derived products such as Rrs from 
popular databases (e.g., SeaBASS, MERMAID) do not yet include such uncertainties. 

Deriving uncertainty budgets will require more work than that done during the field experiment at LJCO.   
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6 Where to from here? Some recommendations on the way forward 
The two sub-sections below (6.1 and 6.2) correspond to actions/recommendations that: 
- Directly come from the work performed in the laboratory and in the field during the course of the 

RTT work and are fully relevant to IMOS 
- Come from more general discussions that took place among the RTT members or that took place for 

some time in the larger bio-optics community in Australia. Those ones go beyond IMOS only, yet are 
definitely relevant to IMOS as well. 

The recommendations outlined in these 2 sections are subsequently summarized in Section 7.  

6.1 Actions / recommendations directly issued from the RTT work 

6.1.1 Keeping the momentum; do we need these experiments at regular intervals? 
As said in section 5.1, bringing together the members of the Australian community whom carry out 

activities involving field radiometry was definitely useful, not only because such occasions are rare and this 
community needs increased communication, but also because this community is highly heterogeneous in terms 
of science goals, instrumentation used, and level of understanding about what makes measurements of 
radiometry in the ocean of good quality. 

What came out from this exercise is that the BGC community still needs education/training on optics. The 
fieldwork at LJCO was an excellent learning exercise for those participating. The reason why the training is 
important is that we want qualified people to make radiometric measurements alongside BGC measurements 
and increase our opportunities to validate OC products This will increase credibility of OC products and thus 
uptake by the user community.  

Other reasons that justify repeating such exercises include checking instrument drift, and also maintaining 
consistency to facilitate data reuse. Promulgating a data interchange format and helping groups to implement 
it would also help. 

Periodic radiometric calibration is needed (annually at least) for IMOS and other radiometers, and 
spectrometer wavelength calibrations should be verified during each radiometric calibration. 

This would also provide continued opportunities for to bring less experienced users to the same level of 
experience, and to fully understand all instruments in use. 

Therefore, there would definitely be value in conducting regularly similar exercises than the ones described 
in this report. What this 12-month RTT activity has shown, however, is that the amount of work needed and 
associated resources (funding and staff) are significant. 

 
Recommendation 1: Undertake similar experiments to the ones described in this report every other year. 
Some core activities would be the same for each of these experiments, and additional more-focused activities 
would be included depending on the community needs and resources. Ideally, we could include below-water 
radiometry if supported by enough interest and instruments. It might actually also be feasible to carry out 
core laboratory calibration activities annually.  

6.1.2 Reprocessing of historical data? 
The logic here is: how can we do better with the data we collected prior to the RTT, considering what we 

observed during the RTT work? 
Actions that could be taken include the reprocessing of historical data by accounting for (when feasible) the 

temperature during data collection, and also accounting for the wavelength shift that was observed, and the 
addition of some well-defined quality control steps. 

 
Recommendation 2: establish a list of data sets that could be reprocessed, and implement the necessary 
changes (for instance to include temperature dependencies). Finalise the radiometric file format used in the 
RTT Field comparison work to allow all users easy access to radiometry in various levels of processing. 

Recommendation 3: agree on instrument-specific data processing codes that the community could use in 
order to improve consistency of end products. 

6.1.3 Community assets, are they sufficient? Where should we invest/disinvest? 
As said above, the pool of instruments (radiometers) used by the Australian community is made of several 

types of instruments, which have various degrees of characterisation, and varying frequencies of calibration. 
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Some of them, e.g., the Curtin DALEC, are prototypes that never really underwent full radiometric 
characterization2. Similarly, commercial instruments rarely undergo more than a basic characterization, which 
is then applied to all instruments produced in the same series (“class-specific” parameters instead of 
“instrument-specific” parameters). Basically, most manufacturers undertake just enough radiometric 
characterisation to determine they are fit for commercial sale. Some of them can carry out more sophisticated 
rounds of characterization, but the cost is generally prohibitive and usually requires participation and/or co-
investment from external groups. Another approach for manufacturers is to collaborate closely with research 
institutions, yet the latter have to be supported in such activities. 

Otherwise, most instruments in the Australian community are aging as well and no replacements are 
foreseen for the moment. 

The former Bio-optical Working Group (BWG) suggested that radiometric measurements should be 
aligned with biogeochemical (BGC) measurements wherever possible. Radiometry is currently performed at 
LJCO, and BGC measurements are currently performed at the National Reference Sites (NRS). Our experience 
in the RTT suggests that bringing BGC measurements to a single radiometric site has a better likelihood of 
best quality radiometric data than bringing radiometry to numerous BGC sites. Another option for IMOS 
investment is to bring radiometers on targeted voyages where many in situ measurements are made (see later 
on, Recommendation 15). This would provide increased spatial coverage of radiometric measurements in 
targeted regions where in situ measurements have been prioritised. This was the rationale behind the DALEC 
installation on the AIMS vessel (discussed below). 

Another asset of our community are the calibration facilities. At least four can be identified here: the Curtin 
facility, the IMO facility (used for this RTT work), and the two national facilities managed by CSIRO (Perth 
and Canberra; the latter being transferred to Brisbane). Here the question is whether these facilities are 
equipped appropriately and involve staff with the appropriate expertise to carry out comprehensive 
characterisation and calibration of sea-going radiometers. What is the status of their equipment, such as 
NIST-calibrated FEL lamps, SpectralonTM plaques or integrating spheres? There would certainly be value in 
these facilities to interact and compare their assets (e.g., lamps). 

The question is what role these different facilities can have in helping the Australian bio-optics community 
to get its instruments at the best possible level. This will no doubt involve the acquisition of additional 
equipment in order to perform more comprehensive characterisation measurements. It is worth noting that 
instruments can be operated during many years when they are properly maintained and their calibration 
regularly verified, allowing for greater return from investments in instrumentation. 

 
Recommendation 4: Maintain an inventory of radiometric instruments in use in the Australian community, 
along with their calibration history (traceability and repeatability), and with a plan for future maintenance, 
refurbishment and modernisation when needed. Consult with the group before replacing / upgrading 
instruments. Existing IMOS assets need to be looked after to extend their life as long as possible. 

 
Recommendation 5: work with the Australian Satellite Calibration Working Group (ASCWG) to evaluate 
the status of the existing radiometric calibration facilities and how they can be used by our community (see 
Malthus et al., 2015) and whether they need upgrades to fulfil this role. 

6.1.4 Community practices for field measurements 
Published protocols should be brought to the attention of the Australian bio-optical community so that the 

recommended best practices are known.  
Literature exists that can be used as guidelines on best practices for different radiometer types, e.g., 

Mobley (1999), Hooker and Morel (2003), Hooker and Zibordi (2005), Hooker (2014). 
The IOCCG is in the process of establishing revised protocols from those that were initially published by 

NASA in the frame of the SeaWiFS and MODIS missions. Instead of being frozen document, the idea is to 
have on-line living documents that can be updated on a regular basis. 

 
Recommendation 6: pool together documentation on protocols for easy access by the Australian bio-optics 
community. 

                                                        
2 Which normally includes, non exhaustively: detector(s) linearity, dynamic range, SNR, temporal stability, spectral 
calibration, stray light when appropriate, cosine response for irradiance sensors, immersion coefficients, residual 
sensitivity to polarisation. 
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Recommendation 7: Organize training exercises/workshops on various aspects of collecting and processing 
radiometric quantities. 

6.1.5 The future of the Lucinda Jetty Coastal Observatory (LJCO) 
Ocean Colour remote sensing provides information on the fundamental radiometric quantity, the water-

leaving radiance or reflectance, which is subsequently used in many ocean colour algorithms to infer inherent 
optical properties such as absorption and scattering and concentrations of key water constituents. Higher-
level products, such as primary productivity as one example, can then be derived from the inherent optical 
properties and biogeochemical concentrations, thus allowing the remote sensing community to establish the 
link between the observed satellite radiometry and biogeochemical processes which are of interest to the 
community, such as coastal dynamics, flood plumes, changes in eutrophication due to land use or carbon 
cycling and fixation - only to name a few examples. 

Because of these important linkages with our Earth’s climate system (e.g carbon fluxes) and ocean biology 
(e.g. primary productivity), the Global Climate Observing System (GCOS) has listed Ocean Colour 
(Radiometry) as an Essential Climate Variable (ECV). It is therefore of utmost importance to monitor the 
accuracy of the satellite-derived radiometric products through accurate in situ radiometric observations. In 
this way, satellite-based radiometric measurements such as reflectance can be established as a reliable long-
term data record.  

The Lucinda Jetty Coastal Observatory was established to support validation of satellite ocean colour 
radiometry and to help advance the understanding and link between the radiometry and the inherent optical 
properties to support the study of biogeochemical processes and modelling. The site is currently the only 
fixed-platform in Australia that does sustained observations of this nature and the only southern-hemisphere 
ocean colour validation platform within NASA’s global network of sun-photometers (AERONET-OC). Thus 
it is nationally and internationally significant and was a key bargaining aspect in convincing the European 
Commission to enter into the Copernicus-Sentinel Data Hub agreement. 

Specifically the unprecedented amount of data from the Copernicus Sentinel series will provide Australia 
with finer spatial and spectral resolution ocean colour observations that offer new national opportunities for 
coastal bio-geochemical process studies and remote sensing both relying on coastal optical observations. The 
Jetty is a near-ideal platform for collecting these observations and testing instrumentation alongside the well-
characterized and maintained AERONET-OC radiometer. The site is highly cost-effective when compared to 
any other methods of collecting such a systematic optical dataset as there are no ship costs involved. The 
platform can also support regular instrument inter-calibration and training exercises. 

Since reinstatement in 2013 the site is operating continuously producing the relevant above and in-water 
optical time-series and has just reached the status of having sufficient sustained long-term measurements to 
start investigating trends. Australia needs at least one coastal and one blue-water cal/val site as proposed in 
our recommendations. One cannot replace the other and each has a unique role.  

More concurrent above and in-water optical measurements such as performed at Lucinda are needed in 
other locations around Australia to adequately characterise coastal waters at continental scale. These 
recommendations are in-line with recommendations supported by all major space agencies at the 2017 
International Ocean Colour Science meeting to develop more sites in coastal and estuarine waters such as 
LJCO as ~60 to 80 % of the global population lives on or near the coast. 
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Sentinel2-MSI true colour image taken above the Lucinda Jetty Coastal Observatory (LJCO). The observatory is located at the end 
of a 6-km long jetty, which appears clearly as a white strip in the image. The spatial resolution of this image is 60m. © ESA, 
Copernicus Australia 
 
 
Recommendation 8: Continued support to maintain LJCO as AERONET-OC site and invest in new sensor 
technology if recommended by AERONET.  

Recommendation 9: Enhance the multi-spectral AERONET-OC acquisitions with hyperspectral radiometry 
for on-going instrument inter-comparison and quality control of radiometric measurements.  
 
Recommendation 10: Reinstate a reduced number of core in-water optical measurements and regular water 
quality sampling to support ocean colour algorithm development and validation as well as BGC modelling. 
This would include: in-water measurements of temperature, salinity, spectral total absorption and attenuation 
as well as spectral backscattering in addition to regular water sampling to determine the concentrations of 
chlorophyll-a and total suspended matter and the absorption of particulate and dissolved organic matter from 
laboratory analysis. 
 
Recommendation 11: Consider LJCO as a platform for regular inter-comparison exercises and testing of new 
instrumentation including practical training exercises.  
 
Recommendation 12: Work towards characterization and correction of the superstructure shading effects at 
LJCO to provide improved uncertainty estimates of the radiometric data. 
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6.1.6 The future of en-route radiometry measurements 
En-route measurements have the advantage of covering different water masses in shorter time periods and, 

therefore, have the potential to increase the spatial footprint for ocean colour validation compared to point 
measurements taken during research voyages or from fixed platforms such as LJCO or (potentially) moorings.  

Under IMOS, en-route radiometric measurements are performed with the DALEC, which is deployed in 
collaboration with AIMS on the RV Solander during selected voyages mainly covering the northern tropical 
waters of Western Australia and the Northern Territory. Recently, Brando et al., 2016, have demonstrated the 
potential of these measurements for satellite ocean colour validation, provided that the instrument is well 
maintained when deployed on the ship and that all necessary metadata are properly recorded (geometry of 
measurements, sea and sky state).  

Existing non-IMOS data should be catalogued and made available so that further exploitation can be 
envisaged. 

Other routes could be envisaged (e.g., the SOTS mooring refurbishments), yet requirements for installation 
on the ship and proper measurements might significantly differ when it comes to collecting data in the 
Southern Ocean. 
 
Recommendation 13: En-route DALEC deployments under IMOS should be maintained to increase the 
spatial footprint for satellite ocean colour validation. Existing data sets should be made available as reflectance 
products for further use. 

Recommendation 14: The IMOS DALEC instruments used for en-route measurements should be inter-
compared with the SeaPRISM at LJCO on annual basis. 

6.2 Mid- to long-term developments around radiometry measurements 

6.2.1 Radiometry measurements on research voyages 
Collecting radiometry measurements should be part of the core activities during research voyages whose 

objectives revolve around ocean biogeochemistry, carbon cycle, primary productivity and carbon export. The 
amount and spectral composition of the incoming solar radiation that then propagates down the water column 
is indeed a key energy input in the ecosystem, and should be known when dealing with science questions in 
these domains. It is not just a quantity of interest for optical oceanographers only. 

Options here include en-route measurements (see section below) or dedicated deployments of in-water 
profiling instruments, both requiring staff properly trained to perform this sort of measurement. Enough time 
has to be included in the daily schedule of operations to accommodate these measurements, and flexibility has 
to be possible as well because good radiometry data cannot be obtained in all sorts of atmosphere and ocean 
conditions, and in any ship behaviour (speed, position w.r.t. the sun). 

The adapted instruments obviously need to be available, which is not easy to achieve with a limited 
instrument pool in the Australian community, combined with staff and funding availability. 

Therefore, the community might consider collectively maintaining at least one profiling radiometer, which 
could be used to piggy-back on research voyages, either long ones (e.g., several weeks on the MNF) or shorter 
ones such as 1-week research cruises off the coast. Advanced planning would be necessary to achieve this, as 
well as dedicated funding for an annual calibration and servicing (minimum) plus basic data quality control 
and processing (so staff time).  

 
Recommendation 15: purchasing and maintaining a minimum of one profiling radiometer system and use it 
on research voyages following a plan to be updated twice a year. Identifying one technical staff as being 
responsible of its deployment, maintenance and of the data processing. 

6.2.2 Blue-water cal/val site off WA 
Australia also needs a blue water calibration/validation site so that Australia can provide relevant data 

back to international space agencies for both coastal and ocean waters. A “blue-water” calibration/validation 
site off Perth, WA, has been proposed to IMOS in June 2016 as one option for growth of IMOS. The rationale 
for developing such a site is the following: 
- “System Vicarious Calibration” (SVC; see appendix 5) is a mandatory step in the generation of high-quality 
geophysical products from satellite ocean colour radiometry (OCR). Currently only two sites exist: MOBY 
(US NASA, off Hawaii; PI Ken Voss, U. Miami) and BOUSSOLE (Europe, ESA, Mediterranean Sea; PI D. 
Antoine, Curtin Uni. / CNRS). Recommendation by the international community is to ensure at least a few 
sites are available and consistent. 



 Radiometry Task Team, final report, 30th June 2017 
 
 

14 

- There is no SVC site in the Southern hemisphere, which is an issue in terms of the sites in the northern 
hemisphere not covering all geometries of the satellite observations. In addition, there is a clear difference in 
atmosphere properties (clarity) between the two hemispheres, and this has an impact on the SVC process. 
- Expertise exists in WA in particular and Australia in general that can be used to develop such a site 
- The geophysical conditions are close to ideal for a SVC site, i.e., clear atmosphere (low aerosol and ozone 
contents, low humidity), low cloudiness, rather stable oligo- to meso-trophic conditions (Zibordi and Mélin, 
2017). 
- There is already some existing logistics thanks to the monthly sampling at the Rottnest IMOS NRS. 
- The establishment of the Australian Copernicus data hub has been possible in particular because Australia 
has put forward a record of historical activities in the calibration/validation domain, so that pursuing this goal 
with the development on new infrastructure is likely needed to maintain this role. 

There are a number of hurdles to pass, however, for this site to become a reality. A first question is whether 
the NASA PACE mission is going to move forward after publication of the 2018 Presidential budget in the 
US. Officially, PACE continues but is on the list of possible candidates for cancellation. The “MOBY-NET” 
concept is fully linked to PACE, and may disappear if PACE is cancelled. If PACE eventually proceeds, NASA 
funding is in principle dimensioned so as to produce two full MOBY systems for being used at the original 
MOBY site in Hawaii, and one system for use on another site. We would likely have to compete with other 
proposals to host this system. Apart from this, some practicalities related to the deployment of such buoys 
would have to be solved, e.g., can we find a ship adapted to deployments? 

 
Recommendation 16: further evaluate the feasibility of a globally-relevant blue water site off Perth, WA, in 
terms of deployment conditions, availability of adapted vessels for deployment and recovery of the mooring, 
and possible funding sources. 

6.2.3 Radiometry from Bio-Argo and other autonomous platforms 
Multi-spectral radiometers have also been integrated and deployed on autonomous platforms by the 

Australian bio-optical community. Initial results from deployments on biogeochemical profiling floats (Bio-
Argo) have shown that these autonomous deployments can be used for validation of ocean colour radiometry 
as well as chlorophyll-a products (Wojtasiewicz et al., submitted).  The advantage of these platforms is that 
they can make many more measurements and at lower cost than from ship-based sampling, substantially 
increasing the number of measurements coincident with satellite overpasses (match-ups) that can be used for 
validation.  

Equivalent sensors have also been deployed on gliders although the quality of glider-based radiometry for 
this application has yet to be assessed as the measurements occur at variable depths below the surface. 

Continued evaluation of these autonomous platforms for undertaking ocean colour validation studies will 
be important to ensure Australia use ocean colour satellite data in the most cost-effective ways. Finding ways 
to work with manufacturers to ensure that these autonomous radiometers can be locally calibrated for 
consistency with other systems in use would be one area for immediate improvement.   

 
Recommendation 17:  Evaluate cost-effective approaches for local calibration of radiometers integrated on 
autonomous platforms. 

Recommendation 18:  Evaluate and assess the quality of radiometry and optical measurements from the 
IMOS gliders  

6.2.4 Uncertainty budgets 
Although any measurement of a physical quantity should come with an uncertainty related to the technique 

used to measure it and the conditions into which it was measured (and other elements depending on what is at 
sake), it is actually seldom the case that such a number is provided. When it comes to using the measurement 
as a “truth” in the process of validation other measurements, uncertainties become of the utmost importance. 

By their very nature, radiometry measurements depend more significantly than many others on the 
conditions under which they are performed. Because they are passive measurements of the ambient light field, 
any perturbation of this field will affect the process. That is what makes these measurements difficult to 
perform properly. Perturbations can originate from, non exhaustively: instabilities of the sun illumination 
(measurements should normally be performed under stable illumination), degree of diffuseness of the incoming 
light, state of the air-water interface, shading from the platform under use (whatever it is a ship or a fixed 
platform), self-shading by the instrument itself, geometry of the measurement (e.g., pointing angles for above-
water radiometry), degree of polarisation of the measured radiation. 
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Data collection protocols are designed either to completely avoid such perturbations (e.g., deploying free-
fall systems way off the ship so as to avoid shade) or to minimize them (building small instruments so as to 
minimize self-shading). 

Additional uncertainties come into play when processing the data, yet this is less radiometry-specific than 
the above environment perturbations. 

As said in section 5.5, deriving relevant uncertainty budgets for field measurements of radiometric quantity 
is currently an area of international research. It needs first identifying all sources of uncertainties, from 
instruments themselves (calibration), data collection protocols, and data processing algorithms. Then numbers 
have to be assigned to these uncertainties, either through data analyses or sometimes just as a best 
(conservative) guess when nothing else is possible. Finally, individual uncertainty assessments have to be 
combined to derive an overall uncertainty budget. 

 
Recommendation 19: establish uncertainty budgets whenever feasible, in order to provide data with 
uncertainties. As far as possible, take advantage of current developments in this domain in the international 
community (in particular current efforts to derive comprehensive error budgets for the two existing SVC 
sites). 

6.2.5 Instrumentation development 
Commercial instruments are not necessarily adapted to all research endeavours. For instance, measuring 

the volume scattering function (VSF) of oceanic particles has long been on hold because no commercial 
instrument was available since prototypes were developed and used in the US in the 1960s. Few other 
developments have been attempted more recently, and they allowed making progress on understanding the 
variability of the VSF. A similar example can be given for the measurement of the underwater 3D radiance 
field. Such complex developments are not often adapted to become commercial products, however, which is 
why the research community sometimes lacks appropriate instruments to make breakthroughs. 

The current panorama of specialised small to medium enterprises (SMEs) becoming integrated into larger 
commercial groups make relationships between researchers and their instrument providers less agile. 
Instruments do not necessarily evolve and, on the contrary, their production might be stopped and continuity 
compromised. 

Some companies produce underwater radiometers that are rather widely used in our community, yet these 
instruments are not part of their main product stream so that the efforts towards characterization, calibration, 
and improvements of these instruments are minimal. 

This situation probably calls for a re-examination of the total reliance of the Australian bio-optics research 
community on overseas commercial providers. 

 
Recommendation 20: evaluate options for more in-house developments, provided that there is a clear view of 
what sort of instrument would be the most amenable to being developed. 

Recommendation 21: Explore new sensor technology to extend the radiometric measurements to cover the 
UV and NIR spectral ranges that are now covered by the next generation of ocean colour satellites such as 
Sentinel-3 (e.g. 400 nm to 1040 nm). 

6.2.6 Improving the uptake of data by the IMOS nodes and the overall Australian science community 
Radiometry per se is rather a “niche activity”, and the associated data have value primarily for scientists 

interested in their collection, processing, and immediate use (the “bio-optics research community”). Because 
high-quality radiometry measurements will inevitably remain scarce, their use to develop broad scale products 
from satellite ocean colour radiometric observations is an indirect way to significantly increase their impact. 

Therefore, to improve the uptake of those data by a larger research community, at the level of the IMOS 
nodes or more broadly, higher-level products have to be generated, such as diffuse attenuation coefficient, 
horizontal visibility or vertical transparency, and primary production (which however involves additional 
modelling). 

These products might be targeted to certain areas of National significance. Then, the community can focus 
validation exercises in these regions of priority. 

In view of facilitating their access and use, the bio-optical community needs to figure out how to organise 
the data so that it goes into AODN with all the necessary metadata. The success of this type of action will be 
underpinned by providing control and consistency to the data formats, metadata languages etc.. 

 
Recommendation 22: Facilitate simpler access to radiometric data through a system like AESOP, which 
allows simultaneous extraction of multiple collocated parameters such as in-water optics and concentrations. 
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Recommendation 23: Use radiometric data from a variety of platforms (e.g., fixed and en-route) for an annual 
quality assessment of satellite ocean colour produced by the IMOS Ocean Colour Sub-facility. 

Recommendation 24:  As a community, identify the most critical satellite product to develop, and whether or 
not we have the corresponding in situ validation data sets. This can be used to prioritise and say where it is 
essential to improve. 

6.2.7 International engagement 
Australia’s activities in the domain of OCR calibration and validation are fundamental to maintain our 

connection with the international community and with space agencies that provide satellite data sets. Keeping 
close links with the international OCR community and space agencies is vital. 

 
Recommendation 25: continuing participation of the Australian community active under IMOS to a number 
of International groups, such as the ESA’s Sentinel3 ocean colour validation team, the CEOS working group 
on cal/val (WGCV) and upcoming OC missions by NASA, NOAA, ISRO, JAXA etc.. Initiate collaboration 
with the Korean Space Agency for GOCI-II (a geostationary Ocean Colour sensor that will also view 
Australia). 

Recommendation 26: On-going support to maintain the IMOS Bio-Optical Data Base that collates bio-
optical and radiometric data collected by the Australian research community for provision to the national and 
international research community for calibration and validation of ocean colour sensors. In other words, 
making our radiometric data available internationally. Such availability is core criterion for Australia being 
accepted internationally as an ocean colour expert country. 

 
 
 
 
 



 Radiometry Task Team, final report, 30th June 2017 
 
 

17 

7 Summary of recommendations, associated needs, and likely impact if implemented 
The table below regroups the recommendations proposed under various topics in section 6, and gives some indication as to whether staff and operating needs to 

take these recommendations onboard are available, and whether new instrumentation would then be needed. The expected impact on the research community and the 
general benefit for users of radiometry data and associated satellite products is also sketched. 
 
 
Some important notes about this Table: 
 
- The practical consequences of implementing the recommendations made here, in particular in terms of cost and possible funding sources, have been intentionally 
left aside from this report. Doing this would mean deriving an implementation plan from the recommendations made in this report, which would require additional 
work and could be done in a next step. 
- No priority ranking of the recommendations has been attempted for the moment. This would actually be the first thing to do if an implementation plan is put 
together. 
- In the Table below, when the answer is “no” to the question “Staff & operating needs covered?”, it does not mean that we expect IMOS only to eventually fulfil the 
need. Again, related to the above comments, multiple supports would have to be attracted in order for the “big picture” sketched in this report to become reality. 
Options include, e.g., the state and federal governments, and international space agencies. 
 

 
 

Possible new instrumentation 
needs 

Are staff & operating needs 
covered by existing support 
(IMOS or others)? 

Impact on the research community, general benefit for users of radiometry data and 
associated satellite products 
 

Recommendation 1: Undertake similar experiments to the ones described in this report every other year. Some core activities would be the same for each of these 
experiments, and additional more-focused activities would be included depending on the community needs and resources. Ideally, we could include below-water 
radiometry if supported by enough interest and instruments. It might actually also be feasible to carry out core laboratory calibration activities annually. 
None Yes if only existing staff 

involved.  
No if dedicated staff has to be 
hired. 
“marginal” costs are not 
covered (travel, consumables, 
shipments, calibrations) 

- Keeping the bio-optics community active and collaborative. 
- Keeping instruments well calibrated 
- Progressively building capability in this community, in relation to radiometry measurements 
 
 

Recommendation 2: establish a list of data sets that could be reprocessed, and implement the necessary changes (for instance to include temperature dependencies) 
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None  No - Quality improvement of existing data sets 
- Implementation of codes to be used for processing future data sets 

Recommendation 3: agree on instrument-specific data processing codes that the community could use in order to improve consistency of end products 
None  Yes - Improved consistency of radiometry data sets 

Recommendation 4: Maintain an inventory of radiometric instruments in use in the Australian community, along with their calibration history (traceability and 
repeatability), and with a plan for future maintenance, refurbishment and modernisation when needed. Consult with the group before replacing / upgrading 
instruments. Existing IMOS assets need to be looked after to extend their life as long as possible. 
None initially, then new 
community-agreed radiometers 

No - Optimised use of assets 
- Community agreement on future instrumentation 

Recommendation 5: work with the Australian Satellite Calibration Working Group (ASCWG) to evaluate the status of the existing radiometric calibration 
facilities and how they can be used by our community (see Malthus et al., 2015) 
Additional laboratory 
equipment for advanced 
radiometers characterisation 

Yes - More and better use of existing calibration facilities by the marine optics community 

Recommendation 6: pool together documentation on protocols for easy access by the Australian bio-optics community. 
None Yes - Facilitate access to information on protocols, with anticipated improvement in practices 

Recommendation 7: Organize training exercises/workshops on various aspects of collecting and processing radiometric quantities. 
None No - Keeping the bio-optics community active and collaborative. 

- Progressively building capability in this community, in relation to radiometry measurements 

Recommendation 8: Continued support to maintain LJCO as AERONET-OC site and invest in new sensor technology if recommended by AERONET. 
None Partly (Proposed to continue 

under the 2017/19 plan for 
IMOS Ocean Colour but not 
sufficiently funded) 

- Data available for ocean colour algorithm development and validation. 
- Uptake by national / international community and space agencies. 

Recommendation 9: Enhance the multi-spectral AERONET-OC acquisitions with hyperspectral radiometry for on-going instrument inter-comparison and quality 
control of radiometric measurements.  
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New hyperspectral 
radiometer(s) if not existing 
already in the community 

No - Data available for ocean colour algorithm development and validation. 
- Uptake by national/international community and space agencies. 
- Enables data quality monitoring of radiometric measurements through regular inter-
comparison. 

Recommendation 10: Reinstate a reduced number of core in-water optical measurements and regular water quality sampling to support ocean colour algorithm 
development and validation as well as BGC modelling. This would include: in-water measurements of temperature, salinity, spectral total absorption and attenuation 
as well as spectral backscattering in addition to regular water sampling to determine the concentrations of chlorophyll-a and total suspended matter and the 
absorption of particulate and dissolved organic matter from laboratory analysis. 
None No (Proposed under the 

2017/22 plan for IMOS Ocean 
Colour Growth) 

- Data available for ocean colour algorithm development, validation, BGC process studies and 
modelling.  
- Uptake by national/international community and space agencies. 
 

Recommendation 11: Consider LJCO as a platform for regular inter-comparison exercises and testing of new instrumentation including practical training 
exercises. 
None Yes if only existing staff 

involved.  
No if dedicated staff has to be 
hired. 
“marginal” costs are not 
covered (travel, consumables, 
shipments, calibrations) 

Same as for Recommendation 1: Keeping the bio-optics community active and collaborative. 
- Progressively building capability in this community, in relation to radiometry measurements 

Recommendation 12: Work towards characterization and correction of the superstructure shading effects at LJCO 
None No - Contribution to establishing an uncertainty budget for radiometry measurements at LJCO  

- Increased confidence in radiometric products. Required for uncertainty budget of radiometric 
measurements. 

Recommendation 13: En-route DALEC deployments under IMOS should be maintained to increase the spatial footprint for satellite ocean colour validation. 
Existing data sets should be made available as reflectance products for further use. 
One DALEC dedicated to en-
route measurements 

Likely Yes (Proposed to 
continue under the 2017/19 
plan for IMOS Ocean Colour) 

- Increased number of radiometric measurements for ocean colour validation across blue and 
coastal waters. 
- Uptake by national/international community and space agencies.  
 

Recommendation 14: The IMOS DALEC instruments used for en-route measurements should be inter-compared with the SeaPRISM at LJCO on annual basis. 
None No - Improved consistency among radiometers. 

- Increased confidence in radiometric products. 



 Radiometry Task Team, final report, 30th June 2017 
 
 

20 

Recommendation 15: purchasing and maintaining a minimum of one profiling radiometer system and use it on research voyages following a plan to be updated 
twice a year. Identifying one technical staff as being responsible of its deployment, maintenance and of the data processing. 
One profiling radiometer No - Increase the benefit from MNF research voyages for the bio-optics community. 

- Optimised use of assets 

Recommendation 16: further evaluate the feasibility of a globally-relevant blue water site off Perth, WA, in terms of deployment conditions, availability of adapted 
vessels for deployment and recovery of the mooring, and possible funding sources. 
All new equipment for the new 
site 

Yes in terms of evaluating this 
option, No if it would have to be 
implemented 

- If feasible and implemented, this site would significantly augment the capability of the 
Australian community in providing essential calibration / validation observations to 
international space agencies 
 

Recommendation 17:  Evaluate cost-effective approaches for local calibration of radiometers integrated on autonomous platforms. 
None 
 

No - Improved consistency among radiometers used on various platforms 

Recommendation 18:  Evaluate and assess the quality of radiometry and optical measurements from the IMOS gliders 
None 
 

No - Improved consistency among radiometers used on various platforms 

Recommendation 19: establish uncertainty budgets whenever feasible, in order to provide data with uncertainties. 
None 
 
 

No - Improved traceability of data sets 

Recommendation 20: evaluate options for more in-house developments, provided that there is a clear view of what sort of instrument would be the most amenable 
to being developed 
 No - Decrease reliance on overseas manufacturers 

- Better fit-for-purpose instruments 

Recommendation 21: Explore new sensor technology to extend the radiometric measurements to cover the UV and NIR spectral ranges that are now covered by 
the next generation of ocean colour satellites such as Sentinel-3 (e.g. 400 nm to 1040 nm). 
Yes if new technology becomes 
available 

No - Increased spectral range for ocean colour validation 
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Recommendation 22: Facilitate simpler access to radiometric data through a system like AESOP, which allows simultaneous extraction of multiple collocated 
parameters such as in-water optics and concentrations. 
None No - Increased use and uptake of data 

Recommendation 23: Use radiometric data from a variety of platforms (e.g., fixed and en-route) for an annual quality assessment of satellite ocean colour produced 
by the IMOS Ocean Colour Sub-facility. 
None Yes - Increased confidence in satellite ocean colour radiometry served by IMOS 

Recommendation 24:  As a community, identify the most critical satellite product to develop, and whether or not we have the corresponding in situ validation data 
sets. This can be used to prioritise and say where it is essential to improve. 
None Yes for reaching consensus. 

No for implementation and 
validation. 

- Increased use and uptake of data driven by impact 

Recommendation 25: continuing participation of the Australian community active under IMOS to a number of International groups, such as the ESA’s Sentinel3 
ocean colour validation team, the CEOS working group on cal/val (WGCV) and upcoming OC missions by NASA, NOAA, ISRO, JAXA etc.. Initiate collaboration 
with the Korean Space Agency for GOCI-II (a geostationary Ocean Colour sensor that will also view Australia). 
None Yes (staff) 

Not fully (travel support) 
- Increased visibility and recognition of the Australian bio-optics community as a key player in 
this field 

Recommendation 26: On-going support to maintain the IMOS Bio-Optical Data Base that collates bio-optical and radiometric data collected by the Australian 
research community for provision to the national and international research community for calibration and validation of ocean colour sensors. In other words, 
making our radiometric data available internationally. 
None Yes in principle (Proposed to 

continue under the 2017/19 
plan for IMOS Ocean Colour) 

- Data available for ocean colour algorithm development, validation and BGC modelling as well 
as provision to space agencies. 
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9 Acronyms 
 
 AOP Apparent Optical Property 
 BGC Biogeochemistry 
 BOUSSOLE BOUée pour l’acquiSition d’une Série Optique à Long termE. 
 BWG Bio-optical Working Group 
 CDOM Coloured Dissolved Organic Matter 
 CHL Chlorophyll 
 CSIRO Commonwealth Scientific & Industrial Research Organisation 
 DALEC Dynamic Above water radiance and irradiance collector 
 EC European Commission 
 ESA European Space Agency 
 EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 
 GBR Great Barrier Reef 
 IMO Insitu Marine Optics, a Perth-based SME 
 IMOS Integrated Marine Observing System 
 IOP Inherent Optical Property 
 LJCO Lucinda Jetty Coastal Observatory 
 MNF Marine National Facility, i.e., the Australian “Investigator” research vessel 
 MOBY Marine Optical BuoY 
 MODIS Moderate Resolution Imaging Spectrometer 
 MSI Multi Spectral Instrument 
 NAP Non-algal particles 
 NASA National Aeronautics and Space Administration of the USA 
 NIR Near infrared 
 NIST National Institute of Standards and Technology of the USA 
 NOAA National Oceanic and Atmospheric Administration of the USA 
 NRS National Reference Station (IMOS) 
 OCR Ocean Colour Radiometry 
 OLCI Ocean and Land Colour Imager 
 PACE Plankton, Aerosol, Cloud, ocean Ecosystem mission 
 PP Primary production 
 RS Remote Sensing 
 RSSRG Remote Sensing and Satellite Research Group (Curtin Uni.) 
 RTT Radiometry Task Team 
 SARDI South Australia Research and Development Institute 
 SeaWiFS Sea-viewing Wide Field-of-view Sensor 
 SGLI Second-Generation Global Imager 
 SRS Satellite Remote Sensing Facility (IMOS) 
 SVC System Vicarious Calibration 
 UTS University of Technology, Sydney 
 UV Ultraviolet  
 VIIRS Visible Infrared Imaging Radiometer Suite 
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10 Appendix 1.  Error sources in above-water radiometry 
We identify below a number of error sources in the determination of Rrs from above-water radiometry 

measurements, as well as sources of differences between instruments. Those with a superscript * have been 
addressed during the work of the RTT. 

 
Sources of Error from the Instrument and their deployment 
Calibration methodology / accuracy* 
Cosine Response (Es) * 
Temperature responsivity changes in Offset (DC) and Slope (Fe / Fl) * 
Wavelength Calibration* 
Linearity (Flux and integration time) * 
Instrument tilt (Es and Lt) 
Skylight Reflection (Lt) 
Stray Light  
Self-Shading (Lt) 
 
Sources of Difference between sensors (other than Error) 
Field of View / Footprint* 
Integration time* 
 
Errors possibly introduced at data processing  
Software bugs / quirks * 
Software filtering methodology* 
Dark correction (related to temperature) * 
Application of calibration coefficients (exact approach varies) * 
Glint correction (fundamentally tied to FOV / footprint Integration time)  
Skylight correction (fundamentally tied to FOV / footprint Integration time) 
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11 Appendix 2: report of the laboratory characterisation and 
calibration experiments 
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Executive Summary 

This report outlines the methodology and presents results of absolute radiometric calibration of selected 
multispectral and hyperspectral radiometers that are commonly used in the Australian ocean colour remote 
sensing community. Measurements were performed at different temperatures and (where applicable) 
integration times to assess the applicability of a given lab-based radiometric calibration to those conditions 
likely to be encountered in the field.   

For all spectrometers, sensor temperature was found to have an influence on the spectral calibration 
coefficient magnitudes - up to 0.56%/°C for blue wavelengths and -0.42%/°C for NIR wavelengths, 
suggesting that a spectral approach for temperature correction should be investigated for all such devices, and 
especially when they are to be used outside typical calibration facility “room” temperatures. 

Integration time linearity was also investigated, and nonlinearities were observed. In general, the commercial 
spectrometers were stable within ±4% across different integration times likely to be used in the field. Trends 
were consistent, so there is a possibility that further compensating the instrument’s response to integration 
time will improve the accuracy of these devices.   

Two different NIST-traceable working standard lamps were measured relative to a third “reference” lamp and 
differed by no more than 2.0% from their initial NIST calibrations.  
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Background 

A number of different hyperspectral radiometers and one type of multispectral radiometer are used for ocean 
colour algorithm development, validation and general marine research in Australia. There are a number of 
manufacturers producing these instruments; optimised for operation above water, in-water or both. 

A selection of these radiometers were chosen for the IMOS Absolute Calibration activity, including two 
DALECs (In-situ Marine Optics and Curtin), two HyperOCRs (Satlantic), six RAMSES (TriOS ), a USSIMO 
(In-situ Marine Optics) and one multispectral sensor, the CIMEL (Cimel Electronique).  

The hyperspectral radiometers all incorporate Carl Zeiss UV/VIS miniature monolithic spectrometer modules 
as the internal light recording device. However, the spectrometer read-out / interface electronics and optical 
design (diffusers, collimators, filters, etc.) differ between the various instruments. The spectrometer modules 
incorporate a fibre optic bundle, entrance slit and mirror for light dispersion and a linear Si photodiode array 
which can record light between approximately 300 nm – 1100 nm into 256 pixels. The Analog to Digital 
Converter (ADC) electronics and microcontrollers control the amount of exposure to light (integration time) 
and record the data digitally (counts) to provide a measure of light in terms of a spectrum of counts. It is this 
raw spectrum that needs to be converted to physical units, in terms of either irradiance (Wm-2nm-1) or radiance 
(Wm-2sr-1nm-1). 

With silicon-based photodiodes, a thermally-induced background current is present and should be removed 
from light measurements. This is termed dark current, dark count or dark offset. Different manufactures have 
slightly different approaches in removing these artefacts. Both the DALEC and USSIMO sensors incorporate 
UV filters to block out light reaching the first few pixels of the spectrometer array. This provides a measure of 
the dark current offsets simultaneously to the spectral measurement whilst also reducing the effects of internal 
stray light. Similarly, the RAMSES sensors block out light in the NIR portion of the silicon array to provide a 
measure of the dark offsets. The HyperOCR sensors incorporate mechanical shutters that periodically close to 
provide a spectral measurement of the dark current. 

The standard approach in converting the hyperspectral digital counts to a physical radiometric quantity 
(radiance/irradiance) is to multiply the sensor calibration coefficients to a dark-corrected spectrum of digital 
counts. The calibration coefficients are typically determined by measuring the sensor response of a high-
powered lamp with a known irradiance. This is typically performed for a fixed integration time and 
temperature in the laboratory by the sensor manufacturer.  
 

Procedure 
The calibration approach adopted in this study incorporates the methods outlined in the Ocean Optics 
Protocols for SeaWiFS Validation, Revision 1 (Mueller and Austin 1995) which recommends the use of a 1000 
W FEL standard of spectral irradiance with calibration traceable to NIST and lamp operation with a 0.01% 
current stable power supply. 
Irradiance Calibration Coefficients 
The general procedure for computing the calibration coefficients FE(λ) for irradiance sensors requires a 
calibrated lamp, at a known distance r, to illuminate the front face of the detector, accurately aligned normal to 
the lamp. Most hyperspectral irradiance sensor responses, Vr(λ), are recorded in digital counts. Thus the 
irradiance calibration factors (in air) are determined as, 
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where E50(λ) is the known lamp irradiance values for a distance of 50 cm, r is given in cm and Vamb(λ) are the 
recorded digital counts of the ambient light when an occulting device is placed in between lamp and detector 
thus measuring the proportion of scattered light that needs to be subtracted. For most hyperspectral 
radiometers, the calibration coefficients are determined for a fixed integration time. The calibration 
coefficients can then be applied to subsequent radiometric measurements to yield spectral irradiance E(λ) as,  
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where V(λ) is a dark corrected measurement, I is the integration time in milliseconds (ms) during the 
measurement and I0 is the integration time during calibration.  
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Radiance Calibration Coefficients 
The general procedure for computing the calibration coefficients FL(λ) for radiance sensors requires a 
calibrated lamp, at a known distance r, to illuminate a calibrated reflectance plaque, normal to lamp, and the 
detector viewing the plaque at an angle of  
θ = 45, measured from the plaque normal. 
The radiance reflected by the plaque and viewed by the sensor in this geometry is determined as, 
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Where ρ(λ,0°,45°) are the calibrated reflectance values for 0° illumination and 45° viewing geometry. Using 
the measured sensor responses, the radiance calibration coefficients (in air) may then be determined as, 
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The calibration coefficients can then be applied to subsequent radiometric measurements to yield spectral 
radiance L(λ) as, 
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Facility 
The IMOS Absolute Calibration measurements were conducted at In-situ Marine Optics’ dedicated optics 
calibration room. The optics calibration room is a 4.5 x 3.5m dark room, painted with black diffuse paint. The 
room is partitioned at one end in order to separate the irradiance lamp from the detector. An adjustable 
aperture within the partition wall allows light to enter into the detector-side partition. The optics room 
houses two 600mm x 900mm (M6) optical benches and various baffles, optical mounts, lamp jigs and sensor 
holders that can be fixed securely to each bench. 
 
Equipment list 

Power Supply OL83A (Optronics). SN:13221347 
Lamp Standards OL FEL-C (Optronics). SN’s: F1227, F793 and 

F722 
Lamp Holder OL61 (Optronics). 
Alignment Jig OL62 (Optronics). 
Reflectance Plaque SRT-99 12 Inch (Labsphere).  

SN: 99AA02-031306083 
Shunt Resistor 3020-01107-0 (Murata). 0.01 Ω , 0-10 VDC 
Digital Multimeter Fluke-179. SN: 15550370 
Optical Mounts M6 Post mounts and V-Clamps (Thorlabs) 
Optical benches 2 x 900 mm x 600 mm. M6 Threaded  
Alignment Laser 10 mW 532 nm 

 
Irradiance Calibration Setup 
 
The procedure for aligning the irradiance sensors to be calibrated with respect to the lamp standard were as 
follows: 
1) An alignment laser was mounted on the optical bench in room A, approximately 90 cm behind the lamp 
mount holder. 
2) The lamp mount holder with alignment jig was mounted approximately 25 cm away from the room 
partition aperture. 
3) The irradiance sensor was mounted using v-block holders approximately 50 cm in front of the lamp on the 
optical bench in room B.  
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4) The alignment laser was powered on, and optical alignment was achieved by adjusting the height and 
rotation of the alignment jig until the laser beam hit the centre of the alignment jig cross hairs and the laser 
beam reflected back on itself. 
5) The alignment of the detector with respect to the lamp was achieved by iteratively rotating, tilting, raising, 
and lowering the optical bench and v-block mounts until the laser beam targeted the centre of the detector’s 
cosine diffuser and the laser beam reflected back on its own path after placing an optical window flat against 
the cosine diffuser. 
6) The distance between the front face of the lamp alignment jig and the front face of the cosine diffuser was 
measured with a 600 mm metal rule with 1 mm markings and recorded in the calibration log sheets. 
7) Once aligned, the alignment jig was removed and the lamp standard was placed in the lamp mount ensuring 
the mounting screws were properly tightened. 
8) The alignment laser was removed. 
9) The lamp was turned on and slowly ramped up to full current with the power supply. 
10) The aperture was adjusted so there were no shadows or diffraction edges on the detector faceplate and any 
stray light was minimised. 
11) The lamp was warmed up for at least 20 minutes before any data were recorded. 
 
Radiance Calibration Setup 
 
The procedure for aligning the radiance sensors to be calibrated with respect to a reflectance plaque and lamp 
standard were as follows: 
1) The alignment laser, lamp mount holder and alignment jig in room A was set up as for the irradiance 
calibration setup. 
2) The reflectance plaque was mounted on the optical bench in room B at a distance greater than 700 mm from 
the lamp. Depending on what sensor was being calibrated, this distance ranged from 720 mm to 977 mm. 
3) The plaque alignment was adjusted until the alignment laser struck the centre of the reflectance plaque area 
and the laser beam reflected back on itself after placement of an optical window pressed flat against the plaque 
surface.  
4) The distance between the front face of the lamp alignment jig and the front face of the reflectance plaque 
was measured with a metal tape measure with 1 mm markings and recorded in the calibration log sheets. 
5) The radiance sensor was mounted using v-block holders at an angle of 45° off normal to the plaque.    
6) The sensor was turned on and a live view of the data output was showed in a monitor. The height and 
rotation of the sensor was adjusted until the maximum signal from the sensor was achieved, indicating that 
the sensor optics was aligned to the centre of the laser beam being reflected off the plaque. 
7) Once aligned, the alignment jig was removed and the lamp standard was placed in the lamp mount ensuring 
the mounting screws were properly tightened. 
8) The alignment laser was removed. 
9) The lamp was turned on allowed to ramp up the current with the power supply. 
10) The aperture was adjusted so there were no shadows or diffraction edges on the reflectance plaque and any 
stray light was minimised. 
11) The lamp was warmed up for at least 20 minutes before any data were recorded 
 
 
Data Collection 
Three types of experiments were conducted to investigate the uncertainty with radiometric calibrations. They 
were to: 
1) Determine the absolute calibration coefficient using the manufacturer’s method for a fixed integration time 
at room temperature. 
2) Determine the absolute calibration coefficients over a range of different integration times.  
3) Determine the absolute calibration coefficients over a range of sensor temperatures. 
The calibration experiments were conducted at the In-situ Marine Optics’ optics calibration lab between 27th 
July 2016 and 6th October 2016. Each sensor calibration was performed individually. For each sensor 
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alignment set up, the sensor was turned on and its supporting software was used to establish communication 
and data logging. 
 
 
Experiment 1 (Room Temperature, Fixed Integration time).  
Calibration measurements were performed at room temperature (~24°C) for a fixed integration time. After a 
warm up time of 5 minutes, at least 20 or more spectral measurements of the direct lamp or plaque target were 
collected. Following this, an intervening occulter (on-axis baffle) was placed in front of the lamp to measure 
the indirect light that reaches the detector. Again at least 20 or more occulted recordings were collected. 
 
Experiment 2 (Range of Sensor Temperatures, Fixed Integration time).  
The sequence of direct lamp (or plaque) and ambient light measurements were repeated over 2 extreme sensor 
temperatures, Cold and Hot. The “cold” measurements were performed first thing in the morning whereby the 
sensors were cooled overnight due to the cooler night time temperatures, typically 14-18°C. For the “hot” 
measurements, the sensors were placed in a low temperature oven at 40°C for at least 1 hour to reach 
equilibrium. The DALEC, HyperOCR and USSIMO instruments reported the internal sensor temperatures 
along with each spectral measurement. Unfortunately, the RAMSES sensors did not provide the internal 
temperatures so only the temperatures of the RAMSES outer metal housing was measured with a 
thermocouple at the start and end of the experiment. Note: “cold” calibrations were not performed for the 
RAMSES sensors since the outer metal housing rapidly increased in temperature during the lamp warm up 
time. 
 
Experiment 3 (Room Temperature, Range of Integration times).  
The sequence of direct lamp (or plaque) and ambient measurements were repeated over a range of each 
sensors allowable integration time settings until the point of near saturation in direct lamp (or plaque) 
readings. 
 
Table 1: A summary of the calibration measurements performed and associated ancillary information required 
for data processing.  

Date Sensor Type Integration Time 
(ms) 

Sensor 
Temp 
 (°C) 

Lamp 
Distance 

(mm) 

Lamp 
Hours 

26/07/2016 
 
 

CIMEL (SN: 658) 
(CSIRO) 

L n/a 18 
38 
14 

720.0 63.7 

27/07/2016 DALEC (SN:0001) 
(CSIRO) 

Ed 
 
 

500 
1 – 1024 (incremental) 
500 

10 
29 
41 

518.0 71.3 

27/07/2016 DALEC (SN:0001) 
(CSIRO) 

Lu 
 
 

1000 
1 – 2048 (incremental) 
1000 

20 
30 
40 

518.0 72.5 

27/07/2016 DALEC (SN:0001) 
(CSIRO) 

Lsky 
 
 

1000 
1 – 2048 (incremental) 
1000 

17 
26 
41 

518.0 74.0 

9/08/2016 HyperOCR (SN:346) 
(CSIRO) 

Ed 512 
8 – 1024 (incremental) 
512 

16 
26 
37 

511 77.2 

9/08/2016 RAMSES (SN:5039) 
(CSIRO) 

Ed 4 – 512 (incremental) 
256 

21 
34 

511 78.6 

10/08/2016 RAMSES (SN:8035) 
(CSIRO) 

Ed 4 – 512 (incremental) 
256 

21 
34 

511 79.5 

10/08/2016 RAMSES (SN:506D) 
(UTS) 

Ed 4 – 512 (incremental) 
256 

23 
31 

511 81.5 

10/08/2016 RAMSES (SN:8375) 
(UTS) 

Ed 4 – 512 (incremental) 
256 

21 
34 

511 82.0 

11/08/2016 HyperOCR (SN:287) 
(CSIRO) 

Lu 512 
8 – 1024 (incremental) 

21 
25 

932 84.0 
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Software 
Six types of software were used to control instrumentation and data acquisition during this calibration 
experiments. DALECview (v4.0), MSDA_XE (8.8.13), SatView (2.9.2), SatCon (1.5.1), USSIMOview (2.2) and 
DALEC_on_Transect. 
A quirk was found in the MSDA_XE software that was used to operate the RAMSES sensors.  Intermittent 
data loss was experienced whereby pixel # 30 of the spectrometer array reported values near the dark current 
magnitude and also appeared to shift the spectrum for data after pixel # 30. Figure 1 shows an example of the 
corrupt and non-corrupt raw spectra, captured with the RAMSES Ed (SN:) sensor.   

 
Figure 1. Example of corrupt and non-corrupt raw lamp spectrum captured with the MSDA_XE software. 

These errors occurred for both the calibrated and raw data files as output by the control software. This quirk 
occurred on 3 separate computers and on 2 different controller units and all 6 spectrometers. 
 
Power Supply Stability 
At various stages of the calibration exercise, the power supply current was monitored by measuring the 
voltage drop across a calibrated precision shunt resistor (0.01Ω ± 0.25%), connected in series with the Lamp 
standard. Using a 4 decimal place voltmeter, the voltage across the resistor was measured and consistently 
gave a reading of 80.0 mA.  Using V=IR, the current was calculated to be stable at 8.00 A ± 0.25%. 
 
Lamp comparisons 
Three FEL lamps were inter-compared to provide confidence in the working lamp standard (F1227) used 
throughout the calibration experiments. The lamp hours of the working Lamp standard at the beginning of 

512 38 
11/08/2016 RAMSES (SN:8494) 

(CSIRO) 
Lu 4 – 512 (incremental) 

256 
15 
32 

932 85.1 

11/08/2016 RAMSES (SN:506F) 
(UTS) 

Lu 4 – 512 (incremental) 
256 

15 
32 

932 87.2 

5/10/2016 DALEC (Curtin) Ed 2500 
8 – 6500 (incremental) 
2500 

23 
30 
42 

519 103.4 
 
 

5/10/2016 DALEC (Curtin) Lu 3000 
8 – 6500 (incremental) 
3000 

26 
30 
45 

977 104.8 
 

5/10/2016 DALEC (Curtin) Lsky 3000 
8 – 6500 (incremental) 
3000 

20 
30 
46 

977 106.6 
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the IMOS RTT calibrations was 59 hours. Over the course of the calibration experiment a total of 43 lamp 
hours were accumulated during the comprehensive calibration tests. The lamp hours of the two Curtin lamps 
were 66 and 110 hours for F722 and F793, respectively. Using the HyperOCR (SN:346) irradiance sensor as 
the transfer radiometer, each lamp was measured. The experimental setup followed the standard alignment 
approach as in section Irradiance Calibration Setup. The room air conditioning was set to 24°C. A lamp and 
sensor warm up of 20 minutes was used for each lamp measurement. Using newly derived calibration 
coefficients for the transfer radiometer from the F1227 lamp measurements, the reproduction of each lamp was 
calculated. Figure 2 shows the irradiance of each lamp as measured by the transfer radiometer. The 
comparison between manufacturer supplied NIST irradiance values and calculated transfer radiometer shows 
a very close agreement within a relative errors between ±1.32% at 400 nm and ±0.3% at 800 nm (see Table 2). 
 

 
Figure 2. Comparison of 3 lamp standards. Solid lines are the manufacturer supplied irradiance scale and the 
symbols are the transfer radiometer derived irradiance scale (left). The spectral error of transferred lamp 
irradiance relative to the F1227 lamp irradiance. (right).  

 
Table 2. Summary of Lamp relative errors at 400nm and 700nm along with the uncertainty in NIST 
irradiance scale and distance. 

Lamp SN Orig. Cal 
Date 

Lamp Hours Error @ 
400nm (%) 

Error @ 
700nm (%) 

NIST Lamp 
+ Dist 

Uncertainty 
@ 400nm 

(%) 

NIST Lamp 
+ Dist 

Uncertainty 
@ 700nm 

(%) 
F-722 02/2003 66 1.32 -0.30 1.49 1.26 
F-793 01/2005 110 -1.20 0.01 1.49 1.26 

F-1227 04/2013 102 n/a n/a n/a n/a 
 
Spectralon Plaque Characterisation 
The manufacturer supplied reflectance values for the Labsphere plaque are given for an 8° illumination and 
hemispherical viewing geometry. Since the geometry for radiance sensor calibration was taken at 0° 
illumination and 45° view, the plaque reflectance for this geometry is required. The plaque reflectance for 0° 
illumination and 45° viewing geometry was determined using the ratio between spectral measurements taken 
8° view and 45° view. The lamp and Spectralon plaque was setup as for the Radiance Calibration Setup 
procedure with a lamp to plaque distance of 720 mm. A Zeiss spectrometer module, with an ARC-72 (Ocean 
Optics, Inc) collimator attachment was positioned to view the centre of the spectralon plaque at a distance of 
45 cm in front of the plaque at 8° from normal. At this distance the narrow field of view of the collimator 
resulted in a viewing footprint of approximately 25 mm in diameter at the centre of the plaque. After a lamp 
warm up time of 20 minutes, 100 spectral readings of direct plaque and occulted plaque were collected with 
the Zeiss MMS1 spectrometer module. The collimator was repositioned to view the centre of the plaque at 45° 
from normal. Again, 100 spectral readings of direct plaque and occulted plaque were collected. Using the ratio 
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between occult corrected 8 and 45 measurements, the reflectance at 45° was transferred from the supplied 
Spectralon calibration values. 
Figure 3 shows the manufacturer supplied and measured reflectance values for the Spectralon plaque. As a 
reference, the Labsphere spectral reflectance at (0°, 45°) is shown (blue line), calculated using published 
tabulated data taken from the Labsphere Technical Guide document. 
(https://www.labsphere.com/site/assets/files/2553/a-guide-to-reflectance-materials-and-coatings.pdf). The 
plaque was characterised post the CIMEL and DALEC (SN:0001) calibrations on the 01/08/2016 (orange line 
in Fig 3). At this time, it was noticed that the Spectralon surface was lightly soiled. Subsequently, the plaque 
was cleaned thoroughly using isopropyl alcohol and delicate tissue wipes and the (0°, 45°) measurements were 
repeated (lime line in Fig 3). The measured reflectance’s of the cleaned Spectralon showed lower reflectance 
values. This could be due to changes in the surface properties post cleaning. The reflectance values from the 
uncleaned measurements were used in the calculation of the CIMEL and DALEC (SN:0001) radiance 
calibration coefficients. For all other radiance sensors, the reflectance values of the cleaned measurements 
were used since those measurements were conducted after cleaning of the plaque. 

 
Figure 3. Supplied spectralon reflectance values for 8°/Hemispherical geometry and the measured 
reflectance’s at (0°, 45°) geometry. 

 

Results and Discussion 
 
The calibration coefficients for the irradiance and radiance sensors were calculated using Eq 1 and Eq 3, 
respectively. The average direct lamp response, Vr(λ), and associated occluded response, Vamb(λ), were calculated 
for the various sensor temperatures tested using the fixed integration time, as was used during factory 
calibration (See Table 1). 
 
For the DALEC and RAMSES sensors, Vr(λ) and Vamb(λ) were corrected for dark current offsets whereby the 
digital counts of the dark pixels within each spectral record was subtracted. For the DALEC sensors, the 
mean counts of pixels 1 to 3 of each raw spectrum was used. For the RAMSES sensors, the mean counts of 
pixels 238 to 254 for each raw spectrum was used. Additionally, the RAMSES data were quality controlled by 
removing the corrupt spectra as recorded by the MSDA_XE software. For the HyperOCR sensors, there was 
a consistent difference between the dark readings (closed shutter) during direct lamp and occulted readings in 
the order of 400 counts. This suggests that there may be some light leakage or improper closing of the 
internal shutter that is used to provide dark reading. Therefore, Vr(λ) and Vamb(λ) were not dark corrected for 
the HyperOCR analysis. However, since the series of direct lamp and occult measurements were conducted in 
quick succession (1 to 2 minutes) of each other, any thermally induced dark offsets should be accounted for in 
the occulted measurement. 
The left panels in figures 4 to 8 show the derived spectral calibration coefficients for the sensors calibrated 
during this study. The solid black lines represent the calibration coefficients derived at “room” temperature as 
per the standard approach used by the various instrument manufacturers. Although the laboratory air-
conditioning was set at 24°C during the measurements, the actual temperatures of the sensors ranged between 

https://www.labsphere.com/site/assets/files/2553/a-guide-to-reflectance-materials-and-coatings.pdf
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21°C and 30°C due to internal heating of the instruments electronics. (See Table 1 for a list of sensor 
temperatures recorded for each calibrated sensor). The blue and orange lines show the derived calibration 
coefficients for “cold” and “hot” sensor temperatures. For reference, each instruments’ factory calibration 
coefficients are also provided, denoted as black dashed lines. Generally, the calibration coefficients for each 
sensor resemble a similar spectral shape when compared with each other. The calibration coefficients are 
relatively low in the visible wavelength range and steadily increase in magnitude toward the NIR wavelengths 
where the sensitivity of the spectrometer module itself diminishes.  
 
The centre panels in figures 4 to 8 shows the percent difference of calibration coefficients relative to “room” 
temperature derived calibration coefficients (IMOS Cal). All irradiance and radiance sensors showed 
differences in calibration coefficients derived for both “cold” and “hot” sensor temperatures. Generally, positive 
differences are observed for “cold” calibrations and negative differences for “hot” sensor temperatures, 
especially for wavelengths approaching the NIR. This indicates that the sensor’s photosensitivity is lower at 
colder temperatures and higher at hotter temperatures.   
For the DALEC Ed (SN:0001) and HyperOCR Ed (SN:346) sensors, the differences in both “cold” and “hot” 
calibration coefficients tend to be more pronounced at increasing wavelengths. The same is evident with “hot” 
calibrations for the RAMSES Ed sensors. Both sensors show relatively large differences in ‘cold’ and “hot” 
calibrations, ranging from approximately ±3% for blue wavelengths up to ±10% toward NIR wavelengths. 
The RAMSES Ed sensors showed differences of approximately 2% in the blue region and -8% in the NIR 
region for “hot” calibrations. However, the temperature ranges during the RAMSES Ed measurements were 
markedly lower (ΔT ≈ 13°C) than that for the DALEC Ed (SN:0001) and HyperOCR Ed (SN:346) 
measurements (ΔT ≈ 30°C and 20°C, respectively). The DALEC Ed (SN:Curtin) sensor shows a reverse 
trend, whereby, the differences of the “hot” calibration coefficients are positive for visible wavelengths, 
ranging from +10% at 400 nm to -4% at 900 nm. A similar situation occurs for the radiance sensors where 
positive differences occur at blue wavelengths and decrease toward negative differences approaching the NIR 
wavelengths. The differences for “cold” and “hot” derived calibration coefficients are generally within ± 5% for 
the radiance sensors, except for the RAMSES Lu sensors with differences down to -10%. 
 
The comparison between each instruments manufacturer’s calibration coefficients and the IMOS Cal derived 
calibration coefficients, in terms of percent difference, are shown in the centre panels (dashed line). The IMOS 
Cal shows good agreement for the HyperOCR Ed (SN:346) and RAMSES Ed (SN: 8035) sensors with relative 
differences within ± 2.5% of the supplied factory calibrations. The comparison for the RAMSES Ed (SN: 5039) 
sensors shows relative differences between -5% and -8% within the 400 nm – 600 nm wavelength range. 
These differences could be explained by the influence of the dirty teflon diffuser that was noted during the 
calibration. Prior to calibration, the diffuser was cleaned with isopropyl alcohol and delicate wipes; however, 
some black streaks still remained within the diffusers uneven surface. The RAMSES Ed (SN:506D and 
SN:8375) both showed a poor comparison between IMOS and factory supplied calibration with relative 
differences between -20% and -10% for visible wavelengths. This suggests significant sensor responsivity 
degradation since the time of this IMOS calibration (Aug 2016) and the factory calibrations (Jul 2011). The 
comparison between the IMOS and factory calibration for the DALEC Ed (SN:0001) shows relative 
differences between -0.5% and -2.5% for visible wavelengths and -7% at 900 nm. This is the same trend as seen 
for the “hot” calibration. Since the DALEC instrument houses 3 spectrometer modules, a microcomputer, 
motor and ancillary sensors in the one unit, the internal temperature of the instrument generally runs “hot” in 
normal operation. Because of this, the standard factory calibration was performed at ~40 °C which is close to 
the “hot” calibration performed in this study. The factory calibration coefficients for the DALEC Ed 
(SN:Curtin) sensor was not supplied at the time of writing this report therefore no comparisons were made. 
The comparison between the IMOS and factory calibration for the radiance sensors are generally within 5%, 
except for the RAMSES Lu (SN:506F) sensor which shows differences of -10% at 400 nm. 
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Table 3. Summary of the calculated slope (Δ) of calibration coefficients at 400 nm and 700 nm as a function 
temperature for each sensor. 

Sensor SN Type Δ(400nm) 
(%°C-1) 

Δ(700nm) 
(%°C-1) 

Tmin 
(°C) 

Tmax 
(°C) 

N 

DALEC 0001 Ed -0.1335 -0.306 10 41 3 
HyperOCR 0346 Ed -0.1342 -0.4184 16 37 3 
RAMSES 5039 Ed -0.0761 -0.2284 21 34 2 
RAMSES 8035 Ed -0.0671 -0.2724 21 34 2 
RAMSES 506D Ed 0.30956 -0.0895 23 31 2 
RAMSES 8375 Ed 0.14942 -0.1112 21 34 2 
DALEC Curtin Ed 0.56462 0.02605 23 44 3 
DALEC 0001 Lu -0.0029 -0.123 20 40 3 
DALEC 0001 Lsky 0.04303 -0.1365 17 41 3 

HyperOCR 0287 Lu 0.12297 -0.0923 22 38 3 
RAMSES 8494 Lu 0.08971 -0.1587 15 32 2 
RAMSES 506F Lu 0.03585 -0.2387 15 32 2 
DALEC Curtin Lu 0.31678 -0.0399 26 45 3 
DALEC Curtin Lsky 0.2117 0.09882 20 46 3 

 
The irradiance calibration coefficients, FE, and radiance calibration coefficients, FL, at 400 and 700 nm 
(normalised to 1 at 24 °C) as a function of sensor temperature, for each sensor, are shown in figures 4 to 8 
(right panels). Generally, normalised FE(700) and FL(700) decreases with increasing sensor temperature, with 
the exception of the DALEC Ed and Lsky (SN:Curtin) channels which shows the reverse trend. The slope (Δ) 
of normalised FE and FL at 400 nm and 700 nm versus sensor temperature are displayed within each plot and 
summarised in Table 3. At 400 nm, the slopes range from  
-0.13%°C-1 to +0.56%°C-1. This is equivalent to calibration coefficient differences of -2.7% to +11.3% at 400 
nm over a temperature range of 20°C. At 700 nm, the slopes range from -0.42%°C-1 to 0.10%°C-1, equivalent to 
differences in calibration coefficients of  
-8.4% to +2.0% over a temperature range of 20°C.  
 
 
Figure 6 shows the derived radiance calibration coefficients of the multispectral CIMEL sensor for “cold”, 
“room” (IMOS Cal) and “hot” sensor temperatures along with a recent NASA (Feb 2016) calibration as 
reference. The calibration coefficients measured at the “cold” sensor temperature shows large percent 
differences relative to the standard room calibration derived coefficients by up to 25% relative difference for 
blue wavelengths (centre plot). The calibration coefficients for the “hot” sensor temperature show relative 
differences in the order of 1% to 3.5% for visible wavelengths and -5% at 1020 nm. The comparison of the 
recent NASA performed calibration with this calibration exercise shows excellent agreement with relative 
differences within ±1% for visible wavelengths and ±1.5% for NIR wavelengths. The 1020 nm channel shows 
a linear relationship between normalised FL and sensor temperature with a calculated slope of -0.31%°C-1 
(right plot). 
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Irradiance Calibration Coefficients 

 
Figure 4: Irradiance calibration coefficients determined for cold, room (IMOS Cal), and hot sensor 
temperatures, along with the manufacturer’s factory calibration coefficients (left panels). Percent difference of 
cold, hot and factory calibration coefficients relative to IMOS Cal calibration coefficients (centre panels) and 
irradiance calibration coefficients at 400 nm and 700 nm as a function of sensor temperature (right panels). 
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Figure 5. Irradiance calibration coefficients determined for cold, room (IMOS Cal), and hot sensor 
temperatures, along with the manufacturers factory calibration coefficients (left panels). Percent difference of 
cold, hot and factory calibration coefficients relative to IMOS Cal calibration coefficients (centre panels) and 
irradiance calibration coefficients at 400 nm and 700 nm as a function of sensor temperature (right panels). 
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Figure 6. Radiance calibration coefficients determined for cold, room (IMOS Cal), and hot sensor 
temperatures, along with the manufacturers factory calibration coefficients (left panels). Percent difference of 
cold, hot and factory calibration coefficients relative to IMOS Cal calibration coefficients (centre panels) and 
radiance calibration coefficients at 412 nm and 1020 nm as a function of sensor temperature (right panel). 
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Radiance Calibration Coefficients 
 

 
 

Figure 7. Radiance calibration coefficients determined for cold, room (IMOS Cal), and hot sensor 
temperatures, along with the manufacturers factory calibration coefficients (left panels). Percent difference of 
cold, hot and factory calibration coefficients relative to IMOS Cal calibration coefficients (centre panels) and 
radiance calibration coefficients at 400 nm and 700 nm as a function of sensor temperature (right panels). 
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Figure 8. Radiance calibration coefficients determined for cold, room (IMOS Cal), and hot sensor 
temperatures, along with the manufacturers factory calibration coefficients (left panels). Percent difference of 
cold, hot and factory calibration coefficients relative to IMOS Cal calibration coefficients (centre panels) and 
radiance calibration coefficients at 400 nm and 700 nm as a function of sensor temperature (right panels). 
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Integration Time Linearity 
The application of Eq 2 and Eq 5 in determining irradiance and radiance from field measurements assumes 
perfect linearity with respect to integration time. For example, the detector response of a constant light flux 
measured with a particular integration time should double when the integration time doubles. In other words, 
the count rate (counts per second) of a sensor should remain constant regardless of how many counts are 
recorded. The integration time linearity of the above sensors were assesed from direct lamp (or plaque) 
readings captured at a variety of integration times in order to collect counts across a large portion of the 
dynamic range of the detectors. The average and standard deviation of sensor responses were calculated for 
each integration time setting. Figure 5 (left plots) shows the dark current corrected average sensor repsonses 
collected for a range of integration times. The count rate (CR) was calculated as, 

� � � � ,
t
VVCR darkr OO �

    (6) 

where, t is the integration time in seconds. 
 
Figures 9 to 13 (right plots) show example count rates at 600 nm for each of the sensors as a function of 
detector counts. The count rates at 600 nm were normalised to 1 at an arbitrary integration time to show the 
relative changes. The value of 600 nm was chosen in figures 9 to 13 because this is near the maximum spectral 
count range achievable without saturation. All sensors tested showed non-linearity with respect to integration 
time in the order of 2% to 4% for most sensors.  
For improved accuracy in radiometric processing, the non-linearity of each sensor should be corrected for. 
The DALEC sensors show large departures from ideal at very low integration times in the order of 100%. 
However, the DALEC manufacturers radiometric processing software (DALECproc) incorporates integration 
time linearity correction as standard (See DALEC calibration file header for description) which adequately 
accounts for this.  
The current radiometric processing techniques adopted for the HyperOCR and RAMSES sensors do not 
incorporate integration time linearity, so variability in the normalised count rate can essentially be interpreted 
as error due to inegration time non-linearity for the HyperOCR and RAMSES sensors. 
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Figure 9. Dark corrected average lamp response measured at a variety of integration times (left). Normalised 
count rate at 600 nm as a function of detector counts (right). 
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Figure 9. Dark corrected average lamp response measured at a variety of integration times (left). Normalised 
count rate at 600 nm as a function of detector counts (right). 
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Figure 10. Dark corrected average lamp response measured at a variety of integration times (left). Normalised 
count rate at 600 nm as a function of detector counts (right). 
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Figure 12. Dark corrected average lamp response measured at a variety of integration times (left). Normalised 
count rate at 600 nm as a function of detector counts (right). 



 Radiometry Task Team, final report, 30th June 2017 
 
 

 

47 

 

 

 

 
Figure 11: Dark corrected average lamp response measured at a variety of integration times (left). Normalised 
count rate at 600 nm as a function of detector counts (right). 
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Conclusion 
 
Absolute radiometric calibrations were performed on a number of hyperspectral irradiance and radiance 
sensors and one multispectral radiance sensor for the IMOS RTT project. Prior to the calibration 
measurements, In-situ Marine Optics’ working lamp standard (F1227) was tested against Curtin’s two lamp 
standards (F722 and F793) using a HyperOCR as the transfer radiometer. The calculated lamp irradiances 
agreed with each other to within ±1.35% at 400 nm and ±0.03% at 800 nm. The power supply current was 
monitored with a calibrated precision shunt resistor and reported a stable current supply of 8.00 A ±0.25% 
throughout the calibration measurements. 
The absolute radiometric calibrations were performed at cold (~14-18°C), room (21-26°C) and hot (32-41°C) 
sensor temperatures. The most significant finding in this study was that sensor temperature was found to 
have a measurable influence on the spectral calibration coefficient magnitudes, typically around 2.5% for blue 
wavelengths up to 15% for NIR wavelengths, suggesting that an approach for temperature correction post-
processing should be investigated to improve the radiometric accuracy of radiometers deployed in field 
conditions. The RAMSES sensors did not measure internal temperature.   
The IMOS radiometric calibrations generally agreed well with each sensors factory calibrations, however, was 
difficult to assess properly due to the confounding effects of sensor temperature differences between factory 
calibrations and measurements made during this study. Large differences, in the order of 20% at blue 
wavelengths, between factory supplied and IMOS calibration coefficients occurred for the three (UTS) 
RAMSES sensors (SN’s 506D, 506F and 8375), which could not be explained by temperature effects. This 
suggests significant sensor degradation since their respective factory calibrations. 
Detector response as a function of integration time (integration time linearity) was assessed for the 
hyperspectral instruments. All irradiance and radiance sensors exhibited non-linear behaviour. The DALEC 
sensors showed the largest non-linear deviation at low integration times, however as noted earlier, this non-
linearity is corrected for within the In-situ Marine Optics DALECproc software package. It is suggested that 
a similar approach in linearity correction be adopted for the Curtin DALEC, RAMSES and HyperOCR 
sensors to improve their radiometric accuracy by < 3%. 
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12 Appendix 3: report of the field experiment at the LJCO 
 

Introduction 
 
This report outlines a series of concurrent field radiometric measurements made at the Lucinda Jetty 

Coastal Observatory (LJCO) with a variety of mainly commercially-available sensors used by the Australian 
scientific community. Within 2 months prior to the field campaign, each sensor was calibrated by the same 
laboratory using methods based on the NASA Ocean Optics Protocols of Ocean Colour Validation.  

Field data collection and post-processing methodologies were kept as close as possible to what would be 
considered ‘standard’ for a particular instrument and task team participant, including using manufacturer-
provided post processing software.  

An above-water measurement regime was selected to facilitate more practical simultaneous data acquisition 
of the same parameter from different instruments, whilst minimising uncertainties due to spatial and temporal 
variability. 

This work then studies the potential differences between instruments during optimal field conditions 
experienced at the LJCO. 

 
Equipment 

 
A representative selection of radiometric instruments used by Australia marine researchers was included in 
the RTT fieldwork. The same radiometers were also calibrated and characterised in the laboratory component 
of this initiative. 
 
Table 4: Radiometers used in both the Laboratory and Field Studies. E denotes “Irradiance” and L denotes 
“Radiance” measurements. The DALEC instruments contain two Radiance sensors and one irradiance sensor. 
*) Non-commercial. 

 
Manufacturer Instrument Operator Serial No. Type 

In-situ Marine Optics DALEC IMOS/CSIRO 1 2L, 1E 
Curtin (Klonowski)* DALEC Curtin 1 2L, 1E 

In-situ Marine Optics USSIMO In-situ Marine 
Optics 

2 E 

Satlantic HyperOCR CSIRO 346 E 
TriOS RAMSES CSIRO 5039 E 
TriOS RAMSES CSIRO 8035 E 
TriOS RAMSES CSIRO 8375 E 

CIMEL Electronique SeaPRISM IMOS/CSIRO 658 L 
Satlantic HyperOCR CSIRO 287 L 
TriOS RAMSES UTS 8494 L 
TriOS RAMSES UTS 506F/836D L 
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Figure 12: The Lucinda Jetty Coastal Observatory platform equipped with Radiometry Task Team 

Instrumentation. (Note IMOS DALEC is partially obscured by hand-railing). 

 
With the exception of the SeaPRISM, all radiometers are hyperspectral devices that incorporate a fibre optic 
input monolithic spectrometer (all likely to be based on the Zeiss MMS-1 module). These devices contain a 
holographic blazed diffraction grating that spreads the incident light according to its wavelength onto a fixed 
linear diode array. Integrating circuitry collects the photocurrent incident on each pixel in the photodiode 
array over a user-selectable time period referred to as the integration time.  
 
Although it is likely that the same spectrometer module is used across all devices, the devices differ in their 
‘read-out’ electronics, which takes the integrated photocurrent and then amplifies and digitises the resulting 
photocurrent to be represented as “counts”. The digital control interface that governs the actual integration 
time chosen for a given measurement also differs amongst manufacturers. In addition, there are differences to 
the optical design and output communications interfaces. All use a RS232 serial data protocol, however some 
encode data in binary or human-readable, or both. 
 
The SeaPRISM contains two silicon photodiodes; one set for low brightness targets (Sea and Sky 
measurements) and the other for high brightness targets (the Sun). A rotating optical filter wheel is placed 
between the target and the photodiodes. It is unclear whether the detector electronics are photocurrent-
integrating at a factory-fixed integration time, or transimpedance (instantaneous photocurrent to voltage 
conversion) based.    
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Methods 
Irradiance 
All single-unit Irradiance (E) radiometers were mounted in a row, with their diffusers at equal height to avoid 
shading. The inclination of each radiometer was adjusted individually to less than approximately 2 degrees by 
using spirit level observations on 2 axes. 
 

 
Figure 13: Irradiance Radiometers: from right to left, RAMSES 5039, RAMSES 8035, HyperOCR 346, 
USSIMO 0002, MS8 Prototype, RAMSES 506D, IMOS HyperOCR (not included in the RTT lab and field 
inter-comparison) and RAMSES 8375. The smallest instrument (5th from the left) is a prototype multispectral 
sensor not included in this work.  

 
The two DALEC instruments (Tab 1.) were attached to boom poles that were lower in elevation than the 
single-unit irradiance sensor line (see Figure 14 and Figure 15), and approximately 6 meters towards the 
Nor-Nor-West from the sensor line (See TOP view diagram). The internal pitch and roll on the IMOS 
DALEC was typically +/- 1.0 degree for the duration of the experiment. 
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Figure 14: The boom-mounted DALEC spectroradiometers (IMOS DALEC on left, Curtin DALEC on right). 

 
Figure 15: Approximate relative heights between cosine collectors (where applicable) and the handrail. Note - 
IMOS DALEC Irradiance cosine collector is level with the handrail. 

 
The Curtin DALEC was operated with software called DALEConTRANSECT.exe, which collected Ed, Lt 
and Lsky sequentially with automatic light integration times. The time differences between data collection 
from the different radiometers is typically less than 1 second. In addition to the radiometric quantities, 
compass heading, internal temperature and pitch and roll were recorded during light integration.  
The IMOS DALEC was operated with DALECView 4.0. The USSIMO data was collected with USSIMOview 
2.0, the HyperOCR data was captured by SatView 2.9.5_7 and the RAMSES data was captured by MSDA_XE 
8.8.13. 
 
Radiance 
All single-unit Radiance (L) radiometers were mounted in a row on a flat black plastic panel. The azimuth and 
view angle of this panel could be altered such that users could rapidly alternate between sea and sky radiance 
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measurements, and also attach occluders in order to collect manual dark offset spectra. All radiometers on this 
panel had consistent azimuth and view angles, within about 2 degrees (See Figure 16).  
The SeaPRISM radiance sensor was mounted on its own mast, higher up on the LJCO platform (See Figure 
15), and its configuration was not altered from the standard AERONET-OC mode.  
The DALEC instruments both feature 2 radiance spectrometers, Lt(40°) and Lsky(40°’). Both DALEC sensors 
were mounted on boom poles, however the DALEC operated under IMOS features a motor and can rotate on 
its axis to provide optimal sun-relative azimuth angles without needed to move the boom pole, whereas the 
Curtin DALEC’s boom pole needed to be re -aligned as the sun transited the sky. 
 
The radiance sensors collect light over different Fields Of View (FOV). The Full-Width-Half-Maximum 
(FWHM) angles in air are shown in Table 5. 
 

Table 5: Radiance Sensor Fields of View. 

Sensor 
Full 

Angle 
FOV (°) 

HyperOCR 23 
SeaPRISM 1.2 

Ramses 7 
IMOS 

DALEC 10 
Curtin 

DALEC 20 
 
 

 
Figure 16: Radiometers attached to black panel in Sky Radiance Mode (Curtin DALEC in background on the 
left, where the Lt sensor head can be seen pointing to the ocean, 40° from Nadir. The other side of the DALEC 
features the Lsky sensor which is pointing to the sky, 40° from Zenith. Hemispherical web-camera (not used for 
radiometric measurements) can be seen in the foreground, mounted to railing. 
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Figure 17: Radiometers in Sea Radiance Mode. 

 
Atmospheric Model Reference Irradiance Approach 
 
Adjacent to the Irradiance and Radiance spectroradiometers, the photodiode and filter wheel-based 
multispectral SeaPRISM was deployed to automatically measure the radiance of the solar disk, sky and sea 
surface at regular intervals throughout the duration of the experiment. The SeaPRISM was shown to be one 
of the most temperature-stable and possibly most temporally-stable radiometer during the IMO laboratory 
calibration and characterisation exercise (excluding the ‘cold’ radiance measurement which likely suffered 
from condensation, and the 1020 nm channel), so information derived from the SeaPRISM was use as a 
reference from which to measure other radiometers performance. 
Based on the solar disk radiance measurements, the SeaPRISM data is processed by NASA AERONET in 
delayed-mode to determine a series of atmospheric products such as Aerosol Optical Thickness, and 
precipitable water vapour. This data was downloaded from the AERONET site and used as input into the 
RADTRAN solar irradiance model (Gregg & Carder, 1990), along with relative humidity, pressure, wind 
speed, and time data collected at LJCO adjacent to the radiance sensor panel.   
The RADTRAN model was run using the Thuillier exo-atmospheric solar irradiance spectrum as input 
(Thuillier, et al., 2003). For comparisons with the other spectrometers, the modelled spectrum was 
temporally interpolated to provide irradiance occurring at the mid-point of the 5 minute measurement period 
and was spectrally convolved to a Gaussian spectral response function with a FWHM of 10 nm to suit the 
Zeiss MMS-1 spectrometer modules which are likely used in these commercial products. An example of the 
spectrally interpolated, modelled irradiance spectrum is shown later in Figure 23, along with spectra from a 
selection of other radiometers near noon. 
 
Reference Radiance Approach 
For Sky and Sea radiance reference, the AERONET-Ocean Color Data Download Level 1.0. Real Time Data 
was used. The band centres for CIMEL are 412, 441, 491, 530, 551 668 and 870nm. 
 
 
Instrument Radiometric Calibration Files 
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The laboratory calibration exercise demonstrated temperature dependence on the instrument responsivity by 
observing instrument responses at “Room” and “Hot” temperatures. Room temperature represents the normal 
ambient temperature conditions commonly experienced in calibration laboratories (22-25 degrees), whereas 
“Hot” calibration temperatures were closer to 35 to 40 degrees - assumed to be closer to the conditions 
expected in the Australian Tropics.  
Based on these laboratory measurements, instrument-specific calibration files were generated for both “room” 
and “hot” laboratory calibration temperatures. For Satlantic and TriOS  sensors, this required characterising 
both the “dark” spectrum and normalised responsivity coefficients. Calibration files were produced to match 
the format of the respective factory calibration file examples, such that the manufacturer’s native processing 
software could be used to process the data from each sensor. As a result, for every measurement, there was a 
“room” and “hot” dataset. 
 
Measurement Sequence:  
 
Table 6: Measurement Sequences performed on Day 1:  

Date Local 
Time ID Type 

Solar 
Zenith 
Angle 
(deg) 

Solar 
Azimuth 

(deg) 

Wind 
Speed 
(m/s) 

Matching 
SeaPRISM 

Time 

9th Nov 2016 11:29 S02 Sea 6.0 85.7 6.0 - 
9th Nov 2016 12:11 S03 Sea 3.6 278.1 6.0 12:05 
9th Nov 2016 12:17 S03 Sky 5.1 275.4 6.1 - 
9th Nov 2016 12:32 S04 Sea 8.5 272.3 6.3 12:32 
9th Nov 2016 12:36 S04 Sky 9.9 271.6 6.3 - 
9th Nov 2016 13:31 S05 Sea 22.6 267.8 5.9 13:32 
9th Nov 2016 13:36 S05 Sky 23.9 267.5 6.1 - 
9th Nov 2016 14:17 S07 Sky 33.3 265.6 6.9 - 
9th Nov 2016 14:21 S07 Sea 34.3 265.4 6.9 - 
9th Nov 2016 14:25 S07 Sky 2 35.4 265.2 6.9 14:32 
9th Nov 2016 14:43 S08 Sky 39.5 264.4 7.1 - 
9th Nov 2016 14:48 S08 Sea 40.7 264.1 7.2 - 
9th Nov 2016 14:53 S08 Sky 2 41.7 263.9 7.2 - 
9th Nov 2016 15:13 S09 Sky 46.6 263.0 6.8 15:10 
9th Nov 2016 15:20 S09 Sea 48.4 262.6 6.5 - 
9th Nov 2016 15:30 S09 Sky 2 50.7 262.1 6.2 - 
9th Nov 2016 15:40 S10 Sky 53.3 261.6 6.2 - 
9th Nov 2016 15:45 S10 Sea 54.4 261.4 6.2 - 
9th Nov 2016 15:50 S10 Sky 2 55.3 261.2 6.2 - 
9th Nov 2016 16:02 S11 Sky 58.5 260.5 6.2 16:00 
9th Nov 2016 16:08 S11 Sea 59.6 260.3 6.2 - 
9th Nov 2016 16:12 S11 Sky 2 60.6 260.0 6.2 - 
9th Nov 2016 16:26 S12 Sky 64.2 259.2 6.2 - 
9th Nov 2016 16:32 S12 Sea 65.4 258.9 6.3 16:30 
9th Nov 2016 16:37 S12 Sky 2 66.5 258.7 6.4 - 
9th Nov 2016 16:56 S13 Sky 70.8 257.7 6.8 - 
9th Nov 2016 17:00 S13 Sea 71.8 257.4 6.9 - 
9th Nov 2016 17:04 S13 Sky 2 72.8 257.1 6.9 - 
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Table 7: Measurements Sequences performed on Day 2:  

Date Local 
Time ID Type Solar Zenith 

Angle (deg) 

Solar 
Azimuth 

(deg) 

Wind Speed 
(m/s) 

Matching 
SeaPRISM 

Time 

10th Nov 2016 9:39 S14 Az 2 32.8 94.3 4.7 - 
10th Nov 2016 9:46 S14 Az 3 31.4 94.0 5.0 - 
10th Nov 2016 9:49 S14 Az 4 30.4 93.8 5.2 - 
10th Nov 2016 9:53 S14 Az 5 29.5 93.7 5.4 - 
10th Nov 2016 9:58 S14 Az 6 28.3 93.4 5.7 - 
10th Nov 2016 10:02 S14 Az 7 27.3 93.8 5.8 - 
10th Nov 2016 10:07 S14 Az 8 26.2 93.6 5.9 - 
10th Nov 2016 10:19 S15 Sky 23.2 93.1 6.3 - 
10th Nov 2016 10:26 S15 Sea 21.5 92.7 6.5 - 
10th Nov 2016 10:29 S15 Sky 2 20.5 92.5 6.7 - 
10th Nov 2016 10:45 S16 Sky 17.1 91.8 7.7 - 
10th Nov 2016 10:50 S16 Sea 16.0 91.6 8.0 - 
10th Nov 2016 10:54 S16 Sky 2 15.1 91.4 8.3 - 
10th Nov 2016 11:06 S17 Sky 12.1 90.7 8.7 - 
10th Nov 2016 11:11 S17 Sea 11.2 90.4 8.7 - 
10th Nov 2016 11:15 S17 Sky 2 10.0 90.1 8.7 - 
10th Nov 2016 11:26 S18 Sky 6.7 88.8 8.8 - 
10th Nov 2016 11:33 S18 Sea 5.6 88.2 8.6 - 
10th Nov 2016 11:38 S18 Sky 2 4.3 87.2 8.5 - 
10th Nov 2016 11:58 S19 Sky 0.3 322.8 7.9 - 
10th Nov 2016 12:02 S19 Sea 1.6 279.2 7.9 - 
10th Nov 2016 12:07 S19 Sky 2 2.5 275.5 7.9 12:05 
10th Nov 2016 12:54 S20 Sky 13.6 269.0 8.5 12:32 
10th Nov 2016 12:58 S20 Sea 14.5 268.7 8.6 - 
10th Nov 2016 13:02 S20 Sky 2 15.5 268.5 8.8 13:04 
10th Nov 2016 13:14 S21 Sky 18.4 267.9 9.4 - 
10th Nov 2016 13:18 S21 Sea 19.4 267.7 9.6 - 
10th Nov 2016 13:23 S21 Sky 2 20.6 267.5 9.8 - 
10th Nov 2016 13:29 S21 Sea 2 21.8 267.2 10.1 13:32 
10th Nov 2016 13:42 S22 Sky 24.9 266.6 10.3 - 
10th Nov 2016 13:46 S22 Sea 25.9 266.4 10.4 - 
10th Nov 2016 13:50 S22 Sky 2 26.9 266.3 10.5 14:04 

 
Results 
Instrument Wavelength Calibration 
For each spectrometer, individual field spectral measurements were initially compared in order to identify any 
wavelength calibration issues amongst the spectrometers. By inspection of the Fraunhofer absorption lines 
and broader absorption bands evident in Figure 18, Figure 19 and Figure 20, it is clear that both DALEC 
instruments deviated from the other spectrometers. For the IMOS DALEC, this deviation has been identified 
as an error from the spectrometer module manufacturer’s front-end electronics; whereby data from the first 
pixel (UV) is not reported and the last pixel value reported is not exposed to light. This then creates a 
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mismatch between the Zeiss factory wavelength calibration polynomial coefficients and the spectrometer data 
output. This issue occurred across all 3 spectrometers inside IMOS DALEC3. 

 
Figure 18: Normalised Irradiance spectra (reference wavelength = 460nm). Note NIR wavelength calibration 
issues with the Curtin DALEC (dotted line), and a 1 pixel (~3.3nm) translation error in the IMOS DALEC 1 
(dashed line). Gaussian-interpolated RADTRAN model output shown from 400 to 700nm in bold line. The 
thin solid lines are the spectra from the USSIMO and one RAMSES spectrometer.   

 

Figure 19: Normalised Sky Radiance spectra (reference wavelength = 460nm). Note NIR wavelength 
calibration issues with the Curtin DALEC (dotted line), and a 1 pixel (~3.3nm) translation error in the IMOS 
DALEC (dashed line). 

                                                        
3 Note, the USSIMO the same spectrometer front end electronics from the same OEM manufacturer, however this module did not 
have the error. 
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Figure 20: Normalised Raw Sea Radiance spectra (reference wavelength = 460nm). Note NIR wavelength 
calibration issues with the Curtin DALEC (dotted line), and a 1 pixel (~3.3nm) translation error in the IMOS 
DALEC (dashed line). 

Unfortunately, the incorrect wavelength calibration of the IMOS DALEC was used during the IMOS RTT 
calibration exercise, and this introduces a spectrally-dependent error, up to 6% at 400nm.  Figure 21 shows 
the fractional error of the uncorrected calibration coefficients for all IMOS DALEC spectrometers (Fractional 
error was determined by the uncorrected spectrum, divided by the corrected spectrum). This spectral 
curvature is directly defined by the fractional difference in the calibration lamp response of an erroneously 
shifted wavelength calibration. After correction for both wavelength calibration and responsivity, the spectral 
features of IMOS DALEC agree well with the USSIMO, Hyper-OCR and RAMSES spectrometers (See 
Figure 22). 

 

 
Figure 21: The Fractional spectral error in the initial IMOS DALEC data introduced by a ~3.3nm 
wavelength calibration translation error during radiometric calibration. Data from Ed, Lsky and Lt are 
overplotted. 
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For the Curtin DALEC, the wavelength calibration variation is more difficult to correct. The source of the 
error on this instrument is most likely due to aging of the spectrometer modules. The spectrometers in the 
Curtin DALEC are approximately 18 years old (circa 1999) and the original wavelength calibration was still 
being applied to the instrument. Wavelength calibrations for all 3 spectrometers (Ed, Lt and Lsky) were tested 
to see if the spectrometer modules were mislabelled, however this did not reconcile any of the mismatched 
Fraunhofer and molecular absorption lines evident in the spectra (See Figure 22). As a result of these 
spectrometers requiring more characterisation measurements to reconcile (i.e. using an emission line source), 
and given that the wavelength calibration appears satisfactory in the visible region, the wavelength calibration 
and resultant radiometric calibration was left uncorrected.  
 

 
Figure 22: Spectral features in Downward Irradiance. The Curtin DALEC irradiance with 3 different 
wavelength calibrations is plotted in dotted lines. The solid, thin lines are from the USSIMO, Hyper-OCR and 
RAMSES. The thin, dashed spectrum is from IMOS DALEC after wavelength and radiometric correction, 
where differences can be seen between 400 and 500nm. The solid thick line is the RADTRAN output. The 
vertical dashed lines are the approximate Fraunhofer or molecular absorption band centres.  

 
Irradiance Responsivity 
 
During the Lucinda field campaign, the lowest solar zenith angle (𝜃𝑧) measurement was performed at 0.3 
degrees. At this solar angle, irradiance differences can primarily be attributable to sensor calibration accuracy 
and to a much lesser extent, pointing accuracy (sensor tilt). 
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Figure 23: Example Irradiance Spectra measured at 𝜃𝑧 = 0.3 degrees showing spectrally interpolated 
RADTRAN reference spectrum with thick solid line. The thin dashed line is the IMOS DALEC, dotted line is 
the USSIMO, dot-dashed line is a RAMSES and the solid thin line is the HyperOCR. The thick dashed line is 
the Curtin DALEC. “Room” temperature calibrations applied. 

 
Figure 24: As in Figure 23, however all data normalised to 460nm. 

By normalising all example noon irradiance spectra to 460 nm, Figure 24 shows spectral differences in the 
downward irradiance data that cannot be attributed to spectrally flat calibration errors or cosine response. 
The choice of 460 nm was made because it this region appears relatively free of Fraunhofer or broad spectral 
absorption features which could introduce variation due to differences in the spectral bandwidths of the 
respective spectrometers. 
Figure 25 shows the “Fractional Error” (ratio) of the example spectra from each spectrometer measured at 
noon compared to the RADTRAN reference. It is important to realise that the jagged nature of these spectral 
errors are not sourced from radiometric calibration or performance, but the more the differences in spectral 
band responses between the instruments and the Gaussian-convolved RADTRAN Spectrum.  
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Figure 25: Fractional errors in example spectra shown previously in Figure 12, calculated by normalising 
sensor spectra by the RADTRAN spectrum. The thin dashed line is the IMOS DALEC, dotted line is the 
USSIMO, dot-dashed line is a RAMSES, the solid thin line is the HyperOCR and the thick dashed line is the 
Curtin DALEC. 

 
In order to estimate the level of uncertainty attributable to spectral mis-match (in separation from systematic 
calibration or instrument responsivity), the normalised fractional errors were calculated by dividing the 
fractional error by the spectrally-averaged (400-700nm) fractional error. These are shown in Figure 26. These 
plots reveal the magnitude of spectral deviation expected when comparing different spectrometers with 
different band centres and spectral responses with the 10 nm FWHM Gaussian-convolved RADTRAN 
spectrum.  
This spectral data was then further reduced by calculating a spectral RMSE (See Table 8) and the maximum 
zero-mean spectral error (See Table 9) that provides estimate of the likely confidence interval of using the 
RADTRAN spectrum as a reference4. 

                                                        
4 Ignoring any overall inaccuracies of RADTRAN which may be up to a few percent in addition. 
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Figure 26: Zero-mean Spectral Error of Example Spectra showing spectral artefacts. The thin dashed line is 
the IMOS DALEC, dotted line is the USSIMO, dot-dashed line is a RAMSES, the solid thin line is the 
HyperOCR and the thick dashed line is Curtin DALEC. The Note – using the RAMSES or USSIMO 
irradiance as the reference results in smoother lines, suggesting very comparable spectral bandwidths between 
Zeiss-based spectrometers. Room temperature calibrations applied. 

 
Figure 27: As in Figure 26, but with "Hot" calibrations applied. 
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Table 8: Root Mean Square normalised spectral errors of the near noon Irradiance measured by 5 
spectrometers, using the RADTRAN irradiance as a reference. 

RMSE USSIMO RAMSES 
IMOS 

DALEC 
CURTIN  
DALEC HOCR 

ROOM 1.1% 1.0% 1.7% 2.5% 1.1% 
HOT 1.1% 0.9% 1.5% 1.2% 2.3% 

 
 
Table 9: Maximum spectral errors of the near noon Irradiance measured by 5 spectrometers, using the 
RADTRAN irradiance as a reference.  

MAX USSIMO RAMSES 
IMOS 

DALEC 
CURTIN  
DALEC HOCR 

ROOM 4.3% 3.8% 5.5% 6.7% 4.1% 
HOT 4.1% 4.0% 4.5% 3.9% 7.5% 

 
Thus, a comparison for any given wavelength using RADTRAN (or any other hyperspectral radiometer) 
could yield errors up to 5%. In this estimate, the Curtin DALEC and HOCR Maximum errors are ignored due 
to pronounced temperature related spectral errors. In the following plots, this +/- 5% envelope is added to 
indicate the estimated confidence interval of the RADTRAN-based irradiance comparisons. 
 
 
Figure 28 and Figure 29 show the 5 minute averaged irradiance values measured at 411 nm for 4 different 
radiometers, along with the RADTRAN-based irradiance used as the reference. Generally, all radiometers 
exhibited the expected cosine-like reduction in intensity as a function of solar zenith angle. Subtle deviations 
in between consecutive 5-minute averages were apparent. These were attributed to subtle angular alignment 
changes as a result of using manual covers / occults during dark current quality control checks and also 
possibly physical sagging of the LJCO mounting booms throughout the experiment.    

 
Figure 28: Five minute average irradiance collected on the 9th and 10th of November 2016 at 411 nm vs. Solar 
Zenith Angle for 4 different radiometers calibrated at “Room” temperature. The RADTRAN-based reference 
irradiance is shown in the solid line. The dotted lines are the estimated +/- 5% error due to spectral mismatch, 



 Radiometry Task Team, final report, 30th June 2017 
 
 

 

64 

combined with a +/- 2-degree tilt error. Sensor data is marked in the legend. Note, the HyperOCR device was 
optimised for underwater use, so is expected to overestimate irradiance at large above-water solar zenith 
angles. All 5-minute standard deviations were smaller than the plot symbols, so were omitted.  

 

Figure 29: As in Figure 28, but for “Hot” calibrations. 

 
Figure 30: Five minute average irradiance collected on the 9th and 10th of November 2016 at 490nm vs. Solar 
Zenith Angle for 4 different radiometers calibrated at “Room” temperature. The RADTRAN-based reference 
irradiance is shown in the solid line. The dotted lines are the estimated errors from +/- 5% error due to 
spectral mismatch, combined with a +/-2 degrees tilt error. Sensor data is marked in the legend. Note, the 
HyperOCR device was optimised for underwater use, so is expected to overestimate irradiance at large above-
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water solar zenith angles. All 5-minute standard deviations were smaller than the plot symbols, so were 
omitted. 

 
Figure 31: As in Figure 30, but for "Hot" calibrations. 

 
Figure 32: Five minute average irradiance collected on the 9th and 10th of November 2016 at 666nm vs. Solar 
Zenith Angle for 4 different radiometers calibrated at “Room” temperature. The RADTRAN-based reference 
irradiance is shown in the solid line. The dotted lines are the estimated errors from +/- 5% error due to 
spectral mismatch, combined with a +/- 2 degrees tilt error. Sensor data is marked in the legend. Note, the 
HyperOCR device was optimised for underwater use, so is expected to overestimate irradiance at large above-
water solar zenith angles. All 5-minute standard deviations were smaller than the plot symbols, so were 
omitted. 
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Figure 33: As in Figure 32, but for “Hot” calibration  

 
Figure 34 to Figure 39 show the fractional errors (sensor irradiance divided by RADTRAN irradiance) for 4 
different radiometers, at three different wavelengths as a function of solar zenith angle for “Room” and “Hot” 
calibration coefficients. The errors vary between sensors and wavelengths5. There appears to be angular 
dependence on the fractional errors. The IMOS DALEC fractional errors were slightly larger than expected 
for the dataset. The tilt of the DALEC was measured and typically varied by no more than 1.5 degrees during 
the experiment, so errors cannot be explained by a consistent tilt offsets.  
 

 
Figure 34: Fractional Error at 411nm (instrument irradiance divided by RADTRAN-based reference 
irradiance) for the different radiometers as a function of Solar Zenith Angle. Data collected from the ascending 

                                                        
5 The internal temperature of the RAMSES spectrometer was not available, however it may be possible to determine a relationship 
between the average counts collected on non-illuminated portions of the spectrometer array and internal temperature.5 
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sun is shown with bold symbols. The dotted lines show the combined +/- 5% radiometric uncertainty and a 
+/- 2 degrees tilt angle uncertainty.  

 
Figure 35: As in Figure 34, but for “Hot” calibration. 

 
Figure 36: Fractional Error at 491nm (instrument irradiance divided by RADTRAN-based reference 
irradiance) for the different radiometers as a function of Solar Zenith Angle. Data collected from the ascending 
sun is shown with bold symbols. The dotted lines show the combined +/- 5% radiometric uncertainty and a 
+/- 2 degrees tilt angle uncertainty.  
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Figure 37: As in Figure 36, but for “Hot” calibration 

 
Figure 38: Fractional Error at 666nm (instrument irradiance divided by Cimel-based reference irradiance) for 
the different radiometers as a function of Solar Zenith Angle. Data collected from the ascending sun is shown 
with bold symbols. The dotted lines show the combined +/- 5% radiometric uncertainty and a +/- 2 degrees 
tilt angle uncertainty.  
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Figure 39: As in Figure 38, but for “Hot” calibration. 

 
To observe the temperature dependency of sensor radiometric responsivity, the near-normal incidence 
irradiance measurements were processed with both “Room” and “Hot” calibrations, and plotted as a function of 
temperature difference between calibration temperature and field temperature (See Figure 40).  
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Figure 40: Near-Normal Incidence Fractional Error (Sensor / RADTRAN Reference) versus temperature 
differences in internal sensor temperatures between calibration and field conditions. The solid lines and 
triangles are from the HyperOCR and the dotted lines and diamonds are from the USSIMO. The crosses and 
dashed lines represent the IMOS DALEC, which was 5 degrees hotter than the hottest calibration 
measurement. The circle and dot-dash lines show the Curtin DALEC. Lines are colour coded by their 
apparent colour: (412nm is violet, 442nm is blue, 490nm is cyan, 530nm is green, 555nm is lime green, 666nm 
is red). 

 

This figure demonstrates that for at least the USSIMO and Hyper-OCR, errors can be minimised if 
radiometric calibrations are performed closer to the temperature encountered during fieldwork (i.e. to achieve 
a Field - Calibration Temperature difference of zero).  
 
 
 
 
 
 
To remove the effects of any systematic errors during calibration from the dataset and reveal the combined 
effects of sensor angular / cosine response6, the irradiance data from each respective sensor was normalised by 
its respective near-normal – incidence irradiance data. This normalised response was then further normalised 
by the equivalent near-normal – incidence normalised RADTRAN model output to produce an estimate 
fractional error in angular response. 

                                                        
6 Although note that internal temperature and SZA are coupled. 
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Figure 41: Fractional Error in Irradiance sensor angular response at 411nm. The dotted lines show a +/- 2 
degrees tilt angle uncertainty. Data collected from the ascending sun is shown with bold symbols. 

 

 
Figure 42: Fractional Error in Irradiance sensor angular response at 491nm. The dotted lines show a +/- 2 
degrees tilt angle uncertainty.  
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Figure 43: Fractional Error in Irradiance sensor angular response at 666nm. The dotted lines show a +/- 2 
degrees tilt angle uncertainty.  

Sea Radiance 
Above water, sea viewing radiance measurements (𝐿𝑡) contain contributions from below the water surface 
(𝐿𝑊), which contain spectral information about hydrosols and particles suspended in the ocean. Even in ideal 
situations where there are no land or observer-introduced perturbations, above water radiance measurements 
are also influenced by skylight (𝜌𝐿𝑠𝑘𝑦), additional perturbations may occur from sun reflections and spectrally 
neutral foam from the air-water interface (𝜖𝐸𝑑), and also other contributions such as fluorescence and floating 
algae (k) if present. All of these terms are wavelength dependent. 

𝐿𝑡 = 𝐿𝑤 + 𝜌𝐿𝑠𝑘𝑦 + 𝜖𝐸𝑑 + 𝑘 

As a result of the surface-derived contributions, the measured sea viewing radiance is subject to high 
frequency temporal variability due to the wind-roughened nature of sea surface. For a given radiance sensor 
view angle, this introduces variability in the signal due to wind speed (wave facet angle changes and whitecaps 
/ foam) and also solar zenith angle. In addition, differences in optical design, software and electronics amongst 
the different radiometers can affect this variability when viewing a dynamically changing target from a fixed 
ocean-sensor distance and view angle. 
A given radiance sensor’s Field Of View (FOV) will serve to spatially average surface-reflected contributions, 
so sensors with larger FOVs should exhibit less temporal variability if all other variables are held constant. In 
addition, sensors with higher integration times (i.e. the time over which photocurrent is collected prior to 
digitization) will also serve to smooth out temporally varying signals. This makes the sensors difficult to 
compare over short time scales (e.g. less than one minute). 
 
 
 Table 10 shows the details of the Sea radiance measurements performed during the LJCO experiment, 
including Solar Zenith Angle, Wind Speed and Sun-Relative Sensor Azimuth angle (RELAZ). Note, the 
SeaPRISM measurement on 9 Nov at 17:09 was only used in the radiance inter-comparison. 
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 Table 10: Sea-viewing Radiance sensor related information  

Date 
(2016) 

Local 
Time ID SZA 

(deg) 
SAZ 
(deg) 

Wind 
(m/s) 

IMO 
DALEC 
RELAZ 

(deg) 

SAT 
RELAZ 

(deg) 

Curtin 
DALEC 
RELAZ 

(deg) 

RAMSES 
RELAZ 

(deg) 

Matching 
SeaPRIS
M Time 

9th Nov 11:29 S02 6.0 85.7 6.0 96.7 25.7 - 25.7 - 
9th Nov 12:11 S03 3.6 278.1 6.0 72.1 21.9 - 21.9 12:05 
9th Nov 12:32 S04 8.5 272.3 6.3 80.3 27.7 85.5 27.7 12:32 
9th Nov 13:31 S05 22.6 267.8 5.9 85.8 32.2 90.9 32.2 13:32 
9th Nov 14:21 S07 34.3 265.4 6.9 - 34.6 88.5 34.6 14:32 
9th Nov 14:48 S08 40.7 264.1 7.2 88.9 35.9 87.4 35.9 14:32 
9th Nov 15:20 S09 48.4 262.6 6.5 87.4 37.4 85.8 37.4 15:10 
9th Nov 15:45 S10 54.4 261.4 6.2 88.6 83.6 84.5 83.6 - 
9th Nov 16:08 S11 59.6 260.3 6.2 89.7 84.7 83.5 84.7 16:00 
9th Nov 16:32 S12 65.4 258.9 6.3 91.1 86.1 82.2 86.1 16:30 
9th Nov 17:00 S13 71.8 257.4 6.9 92.6 87.6 80.7 87.6 (17:09) 

10th Nov 9:39 S14 32.9 94.3 4.7 91.3 - 91.8 - - 
10th Nov 9:46 S14 31.6 94.1 5.0 89.1 - 101.1 - - 
10th Nov 9:49 S14 30.4 93.8 5.2 91.8 - 111.8 - - 
10th Nov 10:26 S15 21.5 92.7 6.5 87.3 77.7 111.5 77.7 - 
10th Nov 10:50 S16 16.0 91.6 8.0 85.4 76.6 110.6 76.6 - 
10th Nov 11:11 S17 11.2 90.4 8.7 82.6 75.4 109.4 75.4 - 
10th Nov 11:33 S18 5.6 88.2 8.6 81.8 73.2 107.1 73.2 - 
10th Nov 12:02 S19 1.6 279.2 7.9 62.2 65.8 118.2 65.8 12:05 
10th Nov 12:58 S20 14.4 268.8 8.6 85.8 76.2 109.4 76.2 12:32 
10th Nov 13:18 S21 19.4 267.7 9.6 83.7 77.3 108.3 77.3 13:04 
10th Nov 13:29 S21 21.8 267.2 10.1 86.2 77.8 107.8 77.8 13:32 
10th Nov 13:46 S22 25.9 266.4 10.4 86.4 78.6 73.1 78.6 14:04 

 
 
 
 
 
 
 
 
 
Figure 44 shows an example 5-minute Sea-viewing Radiance time series, featuring the data from 4 different 
radiometers. Note that most plot symbols are overlapping, indicating good agreement, however there are 
outliers that may be due to differences in FOV or integration time. 
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Figure 44: Example 491 nm Sea Radiance time series. Hyper-OCR data shown in triangles, RAMSES shown 
in squares, Curtin DALEC shown in circles, and IMOS DALEC shown with crosses. Note – the IMOS 
DALEC was viewing due north at a sun-relative azimuth angle of 91 degrees whereas the Curtin DALEC was 
at 110 degrees relative to the sun. The RAMSES and Hyper-OCR radiometers were pointed closer to 75 
degrees from the sun. 

 
Figure 45 shows example 5 minute averaged sea-viewing radiance (LT) spectra for the 4 different types 
spectrometers used during this study. This data was collected with a high solar zenith angle of 16 degrees, a 
wind speed of 8 ms-1 and sun-relative azimuth angles between approximately 75 and 110 degrees. All spectral 
shapes look consistent, however the RAMSES instrument exhibits a lower offset.  

Figure 46 shows the normalised histograms of the same 5-minute sampling interval (shown previously in 
Figure 44) for the 4 different sea-viewing radiometers. Note that the IMOS DALEC has a larger spread of 
values than the Curtin DALEC, but comparable full-width half max deviation compared with the RAMSES 
and the Hyper-OCR. The IMOS DALEC dataset contains low numbers of high radiance values, and this may 
be attributable to differences in FOV, integration times or sun-relative view angles. Figure 47 shows the 
spectral standard deviation of the same dataset. Variation is partly due to changes in irradiance due to solar 
angle during the 5-minute sampling interval, however this spectral shape suggests sun glint may be a 
contributor. It is apparent that the IMOS DALEC sees more sun glint, more often than the other 
spectrometers. By viewing the spectrally normalised standard deviation, it can be seen that each spectrometer 
receives a slightly different sky-glint contribution, however the two radiometers aligned perfectly (RAMSES 
and HyperOCR) had more similar spectral standard deviations. Based on this observation, it is recommended 
that comparisons between sea-viewing radiometers only be performed based on skyglint-corrected data; where 
some variations due to different view angles will be minimised.   
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Figure 45: Example time-averaged Radiance (LT) spectra from the data presented in Figure 44. The dashed 
line is IMOS DALEC (Corrected), the solid line is Hyper-OCR, the dotted line is Curtin DALEC and the dot-
dashed line is the RAMSES. The “Room” temperature calibrations were used. 

 

 

Figure 46: Example 5-minute time-series normalised histogram. RAMSES data shown in yellow, IMOS 
DALEC shown in orange, Hyper-OCR shown in green, and Curtin DALEC shown in Royal Blue. This data is 
the same 5-minute interval as shown in Figure 44 and Figure 45. Note – the IMOS DALEC, Curtin DALEC 
and RAMSES / Hyper-OCR had different sun-relative azimuth angles during this measurement.  
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Figure 47: Example Standard Deviation Radiance (LT) spectra from the data presented in Figure 30. The 
dashed line is IMOS DALEC (Corrected), the solid line is Hyper-OCR, the dotted line is Curtin DALEC and 
the dot-dashed line is the RAMSES.  

 
Figure 48: Normalised Standard Deviation (LT) spectra from the data presented in Figure 30 (Reference 
wavelength for normalisation is 460nm). The dashed line is IMO DALEC (Corrected), the solid line is Hyper-
OCR, the dotted line is Curtin DALEC and the dot-dashed line is the RAMSES.  

 
Sky Radiance 
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Figure 49: Example 491 nm Sky Radiance time series. Hyper-OCR data shown in triangles, RAMSES shown 
in squares, Curtin DALEC shown in circles, and IMOS DALEC shown with crosses. Note – the IMO DALEC 
was viewing due north at a sun-relative azimuth angle of 91 degrees whereas the Curtin DALEC was at 110 
degrees relative to the sun. The RAMSES and Hyper-OCR radiometers were pointed closer to 75 degrees 
from the sun. Note data gap in RAMSES time series.   

 
Figure 50: Example time-averaged Sky Radiance (Lsky) spectra from the data presented in Figure 30. The 
dashed line is IMOS DALEC (Corrected), the solid line is Hyper-OCR, the dotted line is Curtin DALEC and 
the dot-dashed line is the RAMSES. The “Room” temperature calibrations were used. 
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Figure 51: Normalised Standard Deviation (LT) spectra from the data presented in Figure 30. The dashed line 
is IMOS DALEC (Corrected for pixel shift), the solid line is Hyper-OCR, the dotted line is Curtin DALEC 
showing spectral mismatch in the feature near 425nm and the dot-dashed line is the RAMSES. 
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Remote Sensing Reflectance 
Background 
A Remote Sensing Reflectance (𝑅𝑟𝑠) spectrum is determined by dividing the water-leaving radiance spectrum 
(𝐿𝑤) by the downwelling irradiance spectrum (𝐸𝑑). This normalises the spectrum so that the resultant 
information is less influenced by solar geometry and relatively more influenced by substances within the 
water: 

𝑅𝑟𝑠 =
𝐿𝑤

𝐸𝑑
 

As discussed earlier, the measured sea-viewing radiance (𝐿𝑡) depending on the sun and viewing geometry is 
contaminated by sun glint (𝜖𝐸𝑑), diffuse skylight reflection (𝜌𝐿𝑠𝑘𝑦) and potentially other surface features 
which may need to be removed (𝑘) but are usually ignored or filtered by using the median Rrs or other 
statistical measures for a given measurement period (time window).  

𝐿𝑤 = 𝐿𝑡 − 𝜌𝐿𝑠𝑘𝑦 − 𝜖𝐸𝑑 − 𝑘 

The Remote Sensing Reflectance then becomes: 

𝑅𝑟𝑠 =
𝐿𝑡

𝐸𝑑
−

𝜌𝐿𝑠𝑘𝑦

𝐸𝑑
− 𝜖 −

𝑘
𝐸𝑑

 

Rho (𝜌) has historically been presented as time-averaged, spectrally independent value equalling 
approximately 0.022 for calm sea state conditions up to 0.028 for optimal viewing conditions (Mobley, 
1999). The Mobley 1999 paper described the dependence of 𝜌 on sun-relative sensor azimuth, sun angle, 
sensor view angle, and wind speed, and geometry-specific calculations based on this paper have been used as 
the basis for corrections applied to SeaPRISM data (Zibordi, Hooker, F., & D'Alimonte, 2002) , 
incorporated into their S95a, S95m, and S00 methodology. 
Some researchers choose to model 𝜌 as a function of wind speed for restricted sets of experimental geometries 
(Ruddick, 2006). Further spectrally-independent 𝜌 values were calculated considering polarisation of the 
sea surface (Mobley, Polarized reflectance and transmittance properties of windblown sea 
surfaces, 2015), referred to as M15. 
As the skylight reflection captured by a spectrometer (for one given sample) is dependent on a moving sea 
state, it is then also a function instrument FOV and integration time. Furthermore, as the spectral shape of 
𝐿𝑠𝑘𝑦 varies with view angle, solar azimuth and solar zenith, it follows that so too must the spectral shape of 
𝜌7. Accordingly, a spectrally-dependent Hydrolight-based Look Up Table (LUT) was created which retrieves 
the spectral 𝜌 factor for a variety of wind speeds, sun-relative sensor azimuths, solar zenith angles, and sensor 
view angles for clear sky conditions (Slivkoff, 2014). Additionally, a tropical (warm) water Near Infra-Red 
(NIR) similarity spectrum was calculated based on temperature-dependent water absorption measurements 
(Rottgers, McKee, & Utschig, 2014) combined with Great Barrier Reef (GBR) region specific 
backscattering spectra (Slivkoff, 2014, pp. 128-132). By spectrally fitting the similarity spectrum to the 
rho-corrected data in the NIR region using numerical optimisation technique, the residual sun glint 𝜖 can be 
determined without assuming Rrs(NIR)=0. This approach is referred to as MS14.  
Some researchers prefer to use statistical means to reduce skylight and glint contamination. Whereas the S95a 
method uses averaged data from 3 repeat spectral measurements of Lt to produce what is referred to as Lt_mean, 
the S95m method uses the lowest value recorded for each wavelength based on a set of 3 spectral 
measurements, yielding Lt_min (Zibordi, Hooker, F., & D'Alimonte, 2002). This statistical approach in 

effect, reduces the 
𝜌𝐿𝑠𝑘𝑦

𝐸𝑑
− 𝜖 − 𝑘

𝐸𝑑
 terms, however it cannot remove the effects of invariant skylight reflection 

typical of high solar zenith angles, especially with larger FOV sensors, so is still combined with the skylight 
correction (Mobley, 1999) in the S95m method. 

                                                        
7This fact must also be acknowledged for other datasets when considering that a tilted DALEC or HyperSAS-
style sensor can result in a large angular mismatches between the Nadir-relative view angle (Lu) and the 
required complementary zenith-relative view angle (Lsky).  
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Figure 52: Estimated IMOS DALEC Rrs spectra with no skylight correction. Dashed line is based on the 
average Lt spectrum within the 5 minute period, the dotted line is based on the median and solid line is based 
on the mean of the lowest 10% of measurements. 

 

  

  
Figure 53: Estimated glint and skylight-uncorrected Rrs spectra for IMOS DALEC (top left), RAMSES (top 
right), Hyper-OCR (bottom left) and Curtin DALEC (bottom right) for the setting sun on Nov 9th, 2016. 
Each spectrum is an average of the lowest 10% reflectance spectra measured in a 5-minute period. Reflectance 
increased with solar zenith angle.  The irradiance sensor of the Hyper-OCR has the cosine collector optimised 
for underwater use, so large errors are expected at high solar zenith angles. 

Radiance-Comparison with SeaPRISM 
Four SeaPRISM data products distributed by NASA-AERONET are of interest in this study; Lt_mean is the 
mean of 3 sea-viewing radiance measurements. Lt_Stddev is the standard deviation of these 3 measurements, 
Lt_min is the minimum of the 3 sea-viewing radiance measurements and Lw is the sky and glint corrected water-
leaving radiance estimated with the S95m method (Zibordi, Hooker, F., & D'Alimonte, 2002). 
During the course of the 5-minute measurement sequences made with the hyperspectral instruments described 
previously, the autonomous SeaPRISM captured data on approximately 30 min intervals. A few SeaPRISM 
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measurements were made close to the times when the hyperspectral radiometers were viewing the ocean 
surface (see Table 10), and this allowed comparison between the SeaPRISM and the hyperspectral 
equivalents.  
The RTT Sea-viewing radiance dataset was processed with a series of different methods to quantify the 
differences between the aforementioned skylight reflection correction studies. The corrections were performed 
on mean LT, median LT and the mean of the lowest 10% of LT data measured within 5 minutes. For each of 
these inputs, 4 different surface correction approaches were made. Each surface correction used the 
aforementioned GBR-tuned similarity spectrum approach MS14 to remove spectrally-constant sun glint, 
without having to assume Lw(NIR)=0. The first method ignored sky reflection (Glint-only), the second 
correction was based on the spectrally-dependent 𝜌 value with inputs for wind speed, sun-relative azimuth 
angle and solar zenith angle. Third, the latest spectrally constant 𝜌 factors from Mobley 2015 were used, and 
then finally, the spectrally constant 𝜌 factors from Mobley 1999 were used; consistent with the SeaPRISM 
skylight correction. This produced 12 sets of spectra for each sensor for comparison. Although the residual 
glint and skylight corrections are typically applied to Rrs, the corrections can also be applied to LT to estimate 
Lw, and considering the errors in Ed, the effect of skylight reflection on the radiance product is treated 
separately. 
 
Figure 54 compares the SeaPRISM Lt_mean data products with the equivalent, 5 minute averaged, sun-glint 
only corrected Lt  measurements from each spectrometer. Figure 55 compares the SeaPRISM Lt_min data 
products with the equivalent, mean lowest 10% of data recorded in the 5-minute period, sun-glint only 
corrected Lt measurements from each spectrometer. Figure 56 compares the SeaPRISM Lw data products with 
the equivalent, mean lowest 10% of data recorded in the 5 minute period, and sky and sun-glint corrected 
(Slivkoff, 2014) Lw measurements from each spectrometer. 
 
 

 

 
Figure 54  Near-coincident Lt_mean Radiance products. The dashed line is IMOS DALEC (Corrected), the solid 
line is Hyper-OCR, the dotted line is Curtin DALEC and the dot-dashed line is the RAMSES. The “Hot” 
temperature calibrations were used. The diamond plot symbols show the SeaPRISM Lt_mean data, with error 
bars equivalent to +/- one standard deviation of Lt_mean. Note, local times expressed in decimal hours. The 
hyperspectral data are the 5-minute mean data, corrected for glint only. 
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Figure 55.  Near-coincident Lt_min Radiance products. The dashed line is IMOS DALEC (Corrected), the solid 
line is Hyper-OCR, the dotted line is Curtin DALEC and the dot-dashed line is the RAMSES. The “Hot” 
temperature calibrations were used. The diamond plot symbols show the SeaPRISM Lt_min data, with error 
bars equivalent to +/- one standard deviation of Lt_mean. Note, local times expressed in decimal hours. The 
hyperspectral data are the mean lowest 10%, and corrected for sun glint. 

 

 
Figure 56. Near-coincident Lw. The dashed line is IMOS DALEC (Corrected), the solid line is Hyper-OCR, 
the dotted line is Curtin DALEC and the dot-dashed line is the RAMSES. The “Hot” temperature calibrations 
were used. The diamond plot symbols show the SeaPRISM Lw data, with error bars equivalent to +/- one 
standard deviation of Lt_mean. The hyperspectral data are the mean lowest 10%, and sky and sun-glint corrected 
(Slivkoff, 2014).  
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Generally, the radiance measurements for the mean, min and skylight corrected scenarios compared well with 
each other, considering the standard deviations experienced by the SeaPRISM, combined with issues with 
integration time, linearity, temperature effects (which have been minimised), sampling time mismatch and 
radiance sensor field of view differences between sensors. It is interesting to note the significant improvement 
in the SeaPRISM Lt_min product for the November 10, 13:30pm measurement compared with the Lt_mean 

equivalent. When observing the same measurement, the Lw equivalents compare less well between 
instruments, suggesting that these differences may result from variations in skylight correction procedures 
between the SeaPRISM and the hyperspectral products. This uncertainty needs to be explored further, with a 
more focused and comprehensive if SeaPRISM data is to be used to validate above water hyperspectral 
radiometer data. 
 
 
With the limited dataset collected for these purposes, a brief qualitative comparison analysis was performed 
using the SeaPRISM Lw data. The last matchup where SZA = 21.8 was removed from the analysis due to high 
variability in the SeaPRISM Lw data. With the remaining 3 matchups (SZA 59.6, 65.4 and 71.8 degrees), the 
different hyperspectral sensor (4) Lw products produced with the different skylight correction methods (4) and 
input data (2) were compared. For selected wavelengths (442, 491, 530 and 551 nm), a slope and an offset 
(hyperspectral instrument vs. SeaPRISM) was fitted for each wavelength and each Lw product variant. This 
produced 128 different slopes and intercepts. 
Generally, for all instruments and correction types, the slopes at 442 were between 3 and 20% higher than at 
longer wavelengths, indicating a spectral bias in all hyperspectral radiometers compared with the SeaPRISM, 
or spectral bias in all skylight correction approaches. To identify the least spectrally biased approach, the 
wavelength dependent slopes for a given sensor and approach were averaged and the standard deviation was 
calculated. The lowest spectrally averaged slope deviations occurred with the DALEC Lw products using 
average of the lowest 10% of the data. Of that group, the lowest spectral differences occurred where skylight 
correction was performed (as opposed to glint-only correction). 
In terms of spectrally averaged slope, the HyperOCR Lw products (regardless of skylight correction or input 
type) compared better with the SeaPRISM than the Curtin DALEC and the RAMSES data, and similarly to 
the IMOS DALEC data, potentially suggesting that the overall radiometric accuracy of a spectrometer has a 
greater influence on the comparison with the SeaPRISM than the type of skylight correction approach used 
(see Figure 57). It is worth noting that the HyperOCR radiance meter software did not automatically collect 
the dark shutter measurements during deployment, so a manual dark offset had to be applied to the data. This 
may have had implications on the overall accuracy of the HyperOCR meter. 
In terms of spectrally averaged offsets, all hyperspectral radiometers consistently exhibited offsets of between 
0.0009 to 0.0027 Wm-2sr-1.  This may be due to incomplete glint correction applied to all hyperspectral 
radiometers, however the theory behind the non-zero glint offset correction is sound. 
 
Further work is needed on understanding the magnitude and spectral effects on skylight reflection 
contamination, however with this limited dataset, it appears as though instrument-specific variability on the 
radiometric calibration is a larger source of uncertainty than the type of skylight correction applied.  



 Radiometry Task Team, final report, 30th June 2017 
 
 

 

84 

 

Figure 57: Spectrally Averaged Slope for different sensors and skylight correction methods compared to the 
SeaPRISM data (Error bars denote standard deviation of the spectrally-averaged slopes. The wavelengths 
used in average were 442, 491, 530 and 551nm). Hot calibrations were used. Note the Y-axis finished at a 
slope of 0.6. 
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Figure 58: Spectrally Averaged Offset for different sensors and skylight correction methods compared to the 
SeaPRISM data (Error bars denote standard deviation of the spectrally-averaged offsets. The wavelengths 
used in average were 442, 491, 530 and 551nm). Hot calibrations were used. 

 
 
 
Reflectance comparison with SeaPRISM 
This section describes the inter-comparison of DALEC and AERONET-OC SeaPRISM derived above-water 
remote sensing reflectance, which in the framework of this study was considered as reference instrument. All 
other instrument configurations did not allow consistent computation of reflectance using concurrent 
triplicates of Lsky, Lsea and Ed measurements. 
 
The SeaPRISM normalized water-leaving radiance data was obtained from NASA-AERONET in Level 1.5 
cloud-screened quality and subsequently converted into remote sensing reflectance by normalizing to the Sun-
Earth distance corrected extraterrestrial solar irradiance (Thuillier at al., 2003). The (DALEC) field 
observations could not be fully aligned in time with the SeaPRISM measurements (see Table 10), which 
follows an automated schedule of frequent atmospheric measurements followed by sea measurements at 
approximately 30 min intervals. The closest in time matching DALEC observations were selected for the 
radiometric comparison. A total number of 10 matching DALEC and SeaPRISM observations within a 
maximum time difference of 5 min were acquired on both days. Extending the maximum time difference 
between observations to 22 min resulted matching 13 spectra (Fig 56-58).  
 
The DALEC data from both instruments was consistently processed by applying the hot calibration coefficients 
and the Mobley 2015 skylight correction, which is used as standard for processing the IMOS en-route data 
(Brando et al., 2016). The DALEC Lt data was not temporally averaged (as described in the previous radiance 
section) prior to the computation of the reflectance. Instead the instantaneous remote sensing reflectance was 
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computed from which the median remote sensing reflectance spectra were extracted and subsequently 
interpolated to the SeaPRISM bands.  

The instantaneous DALEC spectral data presented in Figs. 56-58 show the temporal variability within each of 
the approximately 5 min measurement intervals. Some of the Curtin DALEC observations exhibit large 
variability (e.g. S03_1, Fig 43), which are possibly a result of a slow adjusting integration time. The median was 
still found a robust measure for determining the most representative spectrum within the 5-min measurement 
intervals even for the highly variable Curtin DALEC data, which for other applications (e.g. comparison with 
satellite data) would have been excluded. 
 
The computed IMOS DALEC reflectance on 9 Nov for measurement sequences S07_1 to S12_2, correspond to 
solar zenith angles above 33 degrees and clearly show an overestimation compared to the SeaPRISM 
observations. This is likely a result of the poor cosine response of the irradiance sensor resulting in an 
underestimation the of the irradiance Ed as shown by the fractional error irradiance analysis (Figure 34-Figure 
39. 
 
 
Restricting the solar zenith to smaller angles (e.g. below 33 degree) result in a much better alignment of the 
IMOS DALEC with the SeaPRISM observations as shown by the scatter plots in Figs. 59 and 60 and reduces 
the spectrally averaged bias by a factor of 2 (see Tables 11 and 12) from 0.018 to 0.009 sr-1. The Curtin DALEC 
in contrast shows a slightly negative bias of 0.009 sr-1 and is underestimating the SeaPRISM observations on 
average. The spectrally averaged mean absolute percentage differences of IMOS and Curtin DALEC’s with 
respect to the SeaPRISM are 52% and 45% respectively. The IMOS DALEC shows lowest percentage errors in 
the blue region of the solar spectrum at 412 nm, while the Curtin instrument performs best in the green spectral 
region at 491 nm (Table 12Error! Reference source not found.). DALEC measurements are highly correlated 
with the SeaPRISM observations (R=0.96-0.99) and shows similar spectrally averaged absolute errors (RMSE) 
of 0.012 sr-1.  
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Figure 59: IMOS DALEC (left), the Curtin DALEC (centre) and SeaPRISM (right) reflectance spectra for 8 
sequences on 9 Nov 2016 (see Tab. 3). DALEC sequence length approximately 5 minutes with median spectra 
shown in red. 
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Figure 60: IMOS DALEC (left), the Curtin DALEC (centre) and SeaPRISM (right) reflectance spectra for 8 
sequences on 9 and 10 Nov 2016 (see Tab. 3 and 4). DALEC sequence length approximately 5 minutes with 
median spectra shown in red. 
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Figure 61: IMOS DALEC (left), the Curtin DALEC (centre) and SeaPRISM reflectance spectra for the final 
sequences acquired on 10 Nov 2016 (see Tab. 4). DALEC sequence length approximately 5 minutes with 
median spectra shown in red. 
 

 

 
 
Figure 62: : Scatter plots of IMOS DALEC versus SeaPRISM estimated reflectance (left), Curtin DALEC 
versus SeaPRISM (centre) and DALEC versus DALEC (right) measurements at five wavelengths and 
maximum solar zenith angles of 66 degrees. 

 
Table 11: Spectral statistics of the IMOS and Curtin DALEC estimated reflectance with reference to the 
SeaPRISM observations shown in Fig. 59. Spectrally averaged results are listed in the last column. 
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Figure 63: Scatter plots of IMOS DALEC versus SeaPRISM estimated reflectance (left), Curtin DALEC 
versus SeaPRISM (centre) and DALEC versus DALEC (right) measurements at five wavelengths and 
maximum solar zenith angles of 33 degrees. 

 
Table 12: 47Spectral statistics of the IMOS and Curtin DALEC estimated reflectance with reference to the 
SeaPRISM observations shown in Figure 60. Spectrally averaged results are listed in the last column. 

 
 
 
Conclusions 
 
Through this RTT field exercise, two separate wavelength calibration issues were identified with each 
DALEC (IMOS and Curtin). These issues are easily avoided with the adoption of a wavelength calibration 
check during the routine (i.e. at least yearly) radiometric calibration. For the IMOS DALEC, this step will 
improve the accuracy of each individual DALEC sensor by approximately 6% at 400nm, however this 
calibration issue has an insignificant impact for the Rrs product, because the errors from each spectrometer 
tend to cancel each other out when forming the ratio Lt/Ed. 
 
The IMOS DALEC irradiance cosine response was also shown to have larger errors than the other irradiance 
spectrometers. It is recommended that the IMOS DALEC cosine collector be upgraded to the same design 
used in the USSIMO, and this will improve the accuracy of the irradiance and resultant Rrs products by up to 
approximately 20% at solar zenith angles of 70 degrees, and at red wavelengths. 
By looking at the irradiance curves vs solar zenith angle collected on 2 different days (ascending and 
descending sun) temperature effects are observed in the data as the internal temperature of the sensors varies. 
For the IMOS DALEC, a temperature-specific correction will improve the accuracy of the data by up to 5% at 
certain wavelengths (i.e. see differences between bold and normal plot symbols in Figure 41). For sensors that 
record internal temperature, a post-processing scheme is feasible, however this is not currently implemented 
in any commercial instrument’s processing workflow. As a result, further engagement with instrument 
manufacturers is required and/or advanced radiometric post-processing codes should be implemented.  
 
A more comprehensive inter-comparison between the IMOS DALEC and the SeaPRISM instruments can be 
achieved, at radiance and reflectance level, by using the routinely collected data at LJCO. This analysis then 
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should incorporate additional uncertainties of the environmental data used as input to the different skylight 
correction methods such as the wind speed, as well as the solar and viewing geometry. Platform perturbations 
may also impact on the quality of the radiometric measurements and could be investigated through a 
modelling approach. Radiometric measurements performed by Hooker at al. (2003) showed that larger solar 
zenith angles produce larger reflections off the platform superstructure and thus can have a significant impact 
on data quality. These radiometric contaminations depend on the size and structure of the platform as well as 
on the geometry between the sun and the platform, which is a function of the time of the day (Hooker at al., 
2003)  
 
 
References 
 
Gregg, W., & Carder, K. L. (1990). A simple solar irradiance model for cloudless maritime atmospheres. 

Limnology and Oceanography, 1657-1675. 
Hooker, S., Zibordi, G., Berthon, J.-F., D’Alimonte, D., van der Linde, D., and Brown, J. W., (2003), SeaWiFS 

Postlaunch Technical Series, Vol. 23, Tower-Perturbation Measurements in Above-Water Radiometry, 
NASA/TM-2003-206892. 

In-situ Marine Optics Pty. Ltd. (2016). IMOS Radiometry Task Team Absolute Calibration Report. Bibra Lake. 
Mobley, C. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. Applied 

Optics, 7442-7455. 
Mobley, C. (2015). Polarized reflectance and transmittance properties of windblown sea surfaces. Applied Optics 

, 4828 - 4849. 
Rottgers, R., McKee, D., & Utschig, C. (2014). Temperature and salinity correction coefficients for light 

absorption by water in the visible to infrared spectral region . Applied Optics, 25093-25108. 
Ruddick, K. (2006). Seaborne measurements of near infrared water-leaving reflectance: The similarity. 

Limnology and Oceanography, 1167–1179. 
Slivkoff, M. (2014). Ocean Colour Remote Sensing of the Great Barrier Reef Waters. PhD dissertation. Curtin 

University. URL: https://espace.curtin.edu.au/handle/20.500.11937/798 
Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., . . . Mandel, H. (2003). The Solar 

Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and 
Eureca Missions. Solar Physics, 1-22 . 

Zibordi, G., Hooker, S. B., F., B. J., & D'Alimonte, D. (2002). Autonomous Above-Water Radiance Measurements 
from an Offshore Platform: A Field Assessment Experiment. Journal of Atmospheric and Oceanic 
Technology, 808-819. 

 
 
 
 
 
  



 Radiometry Task Team, final report, 30th June 2017 
 
 

 

92 

13 Appendix 4: participants lists 
 
The full list of participants to the RTT is provided on the cover page of this report 
 
The laboratory calibrations were conducted and involved: 

- Matthew Slivkoff, Curtin University 
- Wojciech Klonowski, In situ Marine Optics 
- David Boadle, CSIRO 
- Kevin Davies, UTS 
- David Antoine, Curtin University 

The data processing also involved: 
- Elizabeth Botha, CSIRO 
- Charlotte Robinson, UTS and then Curtin University 

 
 
The field work at LJCO included: 

- David Antoine, Curtin University 
- Thomas Schroeder, CSIRO 
- Matthew Slivkoff, Curtin University 
- Brett Baker, CSIRO 
- David Boadle, CSIRO 
- Martina Doblin ,UTS 
- Jenny Lovell, CSIRO 

The related data processing also included, in addition to those listed above: 
- Elizabeth Botha, CSIRO 
- Charlotte Robinson, UTS and then Curtin University 
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14 Appendix 5. What’s “System Vicarious Calibration” (SVC), and the 
need for it 

This is a piece of text adapted from the recommendations of the INSITU-OCR8 white paper: Absolute 
calibration uncertainty of satellite ocean colour sensors has been targeted at 0.5% at the top-of-atmosphere 
level (TOA). This stringent requirement is meant to appropriately serve the use of satellite ocean colour 
products in climate research in particular.  This level of accuracy can be achieved with so-called “system 
vicarious calibration” (SVC), which consists in adjusting the pre-launch calibration coefficients using TOA 
radiances predicted from in situ measurements and modelling of the radiative transfer in the atmosphere. By 
this way, combined uncertainties resulting from satellite absolute pre-launch calibration and from the specific 
models/algorithms applied for determining primary radiometric products (e.g., normalized water-leaving 
radiance spectra) from TOA radiance can be minimized. SVC must use high-quality in situ radiometry 
measurements with full traceability to SI standards. SVC sites should be selected in regions where variability 
and complexity of the atmospheric and oceanic optical properties are low. 

 
The recommendation by the INSITU-OCR white paper is to maintain at least one long-term vicarious 

calibration site with SI traceable radiometry pursuing the objective of producing and delivering highly 
accurate measurements collected under ideal measurement condition (e.g., spatial homogeneity, known aerosol 
and marine optical properties) in a region representative of global ocean observations. Multiple sites are 
encouraged, however. They may offer additional information and alternative sources of data, provided that 
they are appropriately characterized in terms of measurement accuracy, traceability and observation 
conditions. 

 
 

                                                        
8 International Network for Sensor Inter-comparison and Uncertainty assessment for Ocean Colour Radiometry, developed as part of 
the CEOS “Ocean Colour Radiometry Virtual Constellation” (OCR-VC) 
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Back cover illustration:  
Normalized water-leaving radiance at 443 nm from several overpasses of the 

ESA’s Sentinal3-OLCI sensor, covering Australia’s surrounding seas 


